XML文档聚类在众多数据应用领域都具有重要作用。基于特征偏好的XML文档聚类算法是对XML文档进行特征选择,将XML文档描述为n维特征向量,再结合CFP(Clustering with Feature order Preference)算法,根据特征偏好为其赋予权重,每次迭代聚...XML文档聚类在众多数据应用领域都具有重要作用。基于特征偏好的XML文档聚类算法是对XML文档进行特征选择,将XML文档描述为n维特征向量,再结合CFP(Clustering with Feature order Preference)算法,根据特征偏好为其赋予权重,每次迭代聚类过程中进行权重的更新。实验结果表明当CFP算法中的特征偏好权重和XML文档向量化时所用的层次权重设定相结合时,可弥补XML文档向量化时的弊端,提高了XML文档聚类的精度。展开更多
文摘XML文档聚类在众多数据应用领域都具有重要作用。基于特征偏好的XML文档聚类算法是对XML文档进行特征选择,将XML文档描述为n维特征向量,再结合CFP(Clustering with Feature order Preference)算法,根据特征偏好为其赋予权重,每次迭代聚类过程中进行权重的更新。实验结果表明当CFP算法中的特征偏好权重和XML文档向量化时所用的层次权重设定相结合时,可弥补XML文档向量化时的弊端,提高了XML文档聚类的精度。