期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
区分性投影结合最小L1球覆盖的可拒识双层分类器 被引量:2
1
作者 胡正平 贾千文 许成谦 《信号处理》 CSCD 北大核心 2011年第1期20-26,共7页
经典分类模型总是假定测试样本属于训练类之一,然而在网络安全、身份识别、医学诊断等非合作模式识别中往往存在许多非训练类例外模式,这时由于分类器缺乏拒识能力,只能给出错误判决。为此,本文构造了一种基于区分性投影结合最小L1球覆... 经典分类模型总是假定测试样本属于训练类之一,然而在网络安全、身份识别、医学诊断等非合作模式识别中往往存在许多非训练类例外模式,这时由于分类器缺乏拒识能力,只能给出错误判决。为此,本文构造了一种基于区分性投影结合最小L1球覆盖的可拒识双层近邻分类器。该方法针对一类分类器忽略类别间区分性描述的不足,定义一种能够表征各训练类模式细节信息的差分矢量,形成新的差分特征。在差分特征空间进行L1范数最大化主成分分析(Ll-normmaximization principal component analysis,PCA-L1)构建新的区分性投影方法即差分矢量PCA-L1特征提取。然后,在投影空间对各类别分别建立最小L1球覆盖决策边界,这样对于输入的测试模式,便可做出拒识或者接受处理的判决。最后,针对接受的输入模式,再通过最近邻测试得到识别结果。在UCI数据库、MNIST手写体数据库和CMU AMP人脸表情数据库上的实验结果表明本文方法对训练类测试样本具有较高正确识别率的同时,同时能够对非训练类测试样本进行有效地拒识,在实际模式识别领域具有一定的应用价值。 展开更多
关键词 可拒识分类 最小L1球覆盖 区分性投影 差分矢量PCA-L1特征
下载PDF
基于Fisher判别字典学习的可拒识模式分类模型 被引量:1
2
作者 廖重阳 张洋 +1 位作者 屈光中 毕云云 《计算机工程》 CAS CSCD 北大核心 2016年第4期202-208,共7页
针对模式分类任务中测试样本存在未知类别输入的问题,在稀疏表示分类技术的基础上提出一种可拒识模式分类模型。该模型在字典学习的目标函数中加入Fisher判别约束,使样本在该字典下分解的系数具有较大的类间散度和较小的类内散度,将训... 针对模式分类任务中测试样本存在未知类别输入的问题,在稀疏表示分类技术的基础上提出一种可拒识模式分类模型。该模型在字典学习的目标函数中加入Fisher判别约束,使样本在该字典下分解的系数具有较大的类间散度和较小的类内散度,将训练样本在已学习字典下进行分解,并把分解后的系数构建多个局部线性块,为已构建的线性块建立超球覆盖模型,用于描述训练类样本系数的分布状况。对于测试样本,根据在已学字典下的分解系数是否在训练样本系数的覆盖模型范围内,做出拒识或接受分类处理的判决。在MINST手写体数据库上的实验结果表明,该模型在保持较高正确识别率的同时,能对非训练类样本进行有效的拒识处理。 展开更多
关键词 可拒识 字典学习 FISHER判别分析 基于稀疏表示的分类 流形 最大线性块
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部