期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
对立可变性与社会治理可拓优化理论
1
作者 何平 《辽宁警察学院学报》 2018年第1期1-8,共8页
具有矛盾现象的管理优化理论是管理科学与决策分析研究中亟待解决的问题。对于具有这种可变不确定性的优化研究的关键是建立一个科学、实效的形式化体系。文章运用可拓学的可拓集合与关联函数等研究方法,结合不确定性优化理论研究的特点... 具有矛盾现象的管理优化理论是管理科学与决策分析研究中亟待解决的问题。对于具有这种可变不确定性的优化研究的关键是建立一个科学、实效的形式化体系。文章运用可拓学的可拓集合与关联函数等研究方法,结合不确定性优化理论研究的特点,建立了描述矛盾关系的形式化方法,提出了一种具有对立可变性不确定情境下的优化理论——可拓优化理论。该理论由如下几方面构成:(1)从问题的优与非优属性角度,定义了一种描述矛盾现象的对立可变集合;(2)建立了对立集合到可拓集合的映射,通过关联函数建立了具有矛盾问题的可变函数;(3)基于对立可变函数建立了可拓优化的数学模型;(4)将可拓优化模型应用到社会治理优化的实际研究中。 展开更多
关键词 社会治理 可拓 非优学 可拓优化 实施过程
下载PDF
可拓目标规划方法及其应用
2
作者 蔡国梁 王作雷 李玉秀 《应用数学与计算数学学报》 2005年第1期53-59,共7页
本文基于可拓数学和物元分析理论,介绍了可拓集合、关联函数和可拓满意点等概念,提出了可拓优化的概念,建立了可拓目标规划模型,给出了可拓目标规划方法的算法.实例表明,可拓目标规划方法有一定的实用性.
关键词 目标规划 可拓优化 关联函数 极值问题
下载PDF
Vague信息分析决策支持系统及其应用
3
作者 袁涛 刘扬 贺仲雄 《通讯和计算机(中英文版)》 2006年第2期60-64,68,共6页
本文以Vague关联矩阵为基础来进行Vague信息分析和Vague决策,并结合可拓学、消错学等人工智能的方法给出信息分析的决策支持系统框图,此方法特别适用于宏观复杂大系统的决策、论证评价等。
关键词 Vague信息分析 Vague决策 Vague匹配 消错可拓优化 程序框图及其应用
下载PDF
Research and strategy employment information based on extension data mining
4
作者 Xihua zhang 《International Journal of Technology Management》 2015年第11期14-15,共2页
This paper uses the extension theory of knowledge, probes into the problems of students employment of College of computer science, puts forward to the solving method,specific and provides corresponding strategies. At ... This paper uses the extension theory of knowledge, probes into the problems of students employment of College of computer science, puts forward to the solving method,specific and provides corresponding strategies. At the same time, it carries on the appraisal to provide strategy, put forward to optimal strategies; it uses of baseing on extension data mining and mining association rules of the corresponding and finding the meaning relations existing in enterprise recruitment, 展开更多
关键词 Extentics Strategy generating based on extension data mining
下载PDF
Structural topology optimization: Extensibility and attainability 被引量:6
5
作者 ZHANG WeiHong ZHANG ZhiDong +1 位作者 ZHU JiHong GAO Tong 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第7期1310-1321,共12页
Extensibility and attainability of topology optimization are discussed by investigating a variety of simultaneous topology opti-mization methods extended from the standard formulation.First,the state of the art is hig... Extensibility and attainability of topology optimization are discussed by investigating a variety of simultaneous topology opti-mization methods extended from the standard formulation.First,the state of the art is highlighted through systematic classification of developed methods,such as simultaneous topology optimizations of microstructure and macrostructure,structure and supports,structure and design-dependent loads,structure and locations of involved components.Second,some recent results about simultaneous topology optimization of structure and applied loads are presented.It is shown that the simultaneous topology optimization is an integrated methodology that extends the concept of standard topology optimization in the sense of systematic design.The presence of more than one kind of design variable of different nature makes the optimization problem complex but enlarges the design space to attain the optimization. 展开更多
关键词 topology optimization simultaneous optimization MULTI-COMPONENT SUPPORT design-dependent load load location
原文传递
DIFFERENTIABILITY OF CONVEX FUNCTIONS ON SUBLINEAR TOPOLOGICAL SPACES AND VARIATIONAL PRINCIPLES IN LOCALLY CONVEX SPACES 被引量:3
6
作者 CHENG LIXIN TENG YANMEI 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2005年第4期611-632,共22页
This paper presents a type of variational tinuous functions on certain subsets in duals principles for real valued ω^* lower semicon- of locally convex spaces, and resolve a problem concerning differentiability of c... This paper presents a type of variational tinuous functions on certain subsets in duals principles for real valued ω^* lower semicon- of locally convex spaces, and resolve a problem concerning differentiability of convex functions on general Banach spaces. They are done through discussing differentiability of convex functions on nonlinear topological spaces and convexification of nonconvex functions on topological linear spaces. 展开更多
关键词 Convex function βdifferentiability Variational principle Perturbed optimization Banach spaces Locally convex spaces
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部