Himalayan mountain system is distinguished globally for a rich biodiversity and for its role in regulating the climate of the South Asia. Traditional crop-livestock mixed farming in the Himalaya is highly dependent on...Himalayan mountain system is distinguished globally for a rich biodiversity and for its role in regulating the climate of the South Asia. Traditional crop-livestock mixed farming in the Himalaya is highly dependent on forests for fodder and manure prepared from forest leaf litter and livestock excreta. Apart from sustaining farm production, forests provide a variety of other tangible and intangible benefits, which are critical for sustainable livelihood of not only 115 million mountain people, but also many more people living in the adjoining plains. Extension of agricultural land- use coupled with replacement of traditional staple food crops by cash crops and of multipurpose agroforestry trees by fruit trees are widespread changes. Cultivation of Fagopyrum esculentum, Fagopyrum tataricum, Panicum miliaceum, Setaria italica and Pisum arvense has been almost abandoned. Increasing stress on cash crops is driven by a socio-cultural change from subsistence to market economy facilitated by improvement in accessibility andsupplyofstaplefoodgrainsatsubsidizedpriceby the government. Farmers have gained substantial economic benefits from cash crops. However, loss of agrobiodiversity implies more risks to local livelihood in the events of downfall in market price/demand of cashcrops,terminationofsupplyofstaplefoodgrains at subsidized price, pest outbreaks in a cash crop dominated homogeneous landscape and abnormal climate years. Indigenous innovations enabling improvement in farm economy by conserving and/enhancing agrobiodiversity do exist, but are highly localized. The changes in agrobiodiversity are such that soil loss and run-off from the croplands have dramatically increased together with increase in local pressure on forests. As farm productivity is maintained with forest-based inputs, continued depletion of forest resources will result in poor economic returns from agriculture to local people, apart from loss of global benefits from Himalayan forests. Interventions including improvement in traditionalmanureandmanagementofon-farm trees, participatorydevelopmentofagroforestryindegraded forestlandsandpoliciesfavoringeconomicbenefitsto local people from non-timber forest products could reduce the risks of decline in agricultural biodiversity and associated threats to livelihoods and Himalayan ecosystems.展开更多
Water has become a key restricting factor of the urbanization process in developing arid areas.Based on qualitative and quantitative methods,we constructed an integrated in-dicator system to assess the status of water...Water has become a key restricting factor of the urbanization process in developing arid areas.Based on qualitative and quantitative methods,we constructed an integrated in-dicator system to assess the status of water resources and urbanization system in arid area,and established an AHP model reformed by entropy technology to evaluate the temporal and spatial variations of water resources constraint intensity on urbanization.This model is ap-plied to the Hexi Corridor,a typical arid area in NW China.Results show that,water resources constraint intensity on urbanization in the Hexi Corridor is bigger in the east and smaller in the west.It has changed from the less strong constraint type into the strong constraint type from 1985 to 2005,yet it decreased appreciably in recent years.At present,most areas in the Hexi Corridor belong to the less strong or strong constraint type.Through rational adjustment of water resources and urbanization system,the Hexi Corridor can still promote water resources sustainable utilization and accelerate the urbanization process.This study suggests that the integrated assessment model of water resources constraint intensity on urbanization is an effective method to analyze the conflicts between water resources and urbanization system in arid area.展开更多
The sustainability of agricultural production depends on conservation and appropriate use and management of scarce water resources especially in arid and semi-arid areas where irrigation is required for the production...The sustainability of agricultural production depends on conservation and appropriate use and management of scarce water resources especially in arid and semi-arid areas where irrigation is required for the production of food and cash crops. The objective of this paper was to evaluate the effects of surface and subsurface drip irrigation (SDI) at 5, 20 and 35 cm depths on water's dynamic in soil (Soil moisture distribution, water's stock in soil and irrigation water use efficiency) to produce maize in semiarid climates. Field study was conducted at the Higher Institute of Agronomy of Chott Meriem, Tunisia. The results indicated that soil moisture content under subsurface drip irrigation at 35 cm (T3) depth was more uniform compared to 5 cm (T1) and 20 cm (T2). Moreover, irrigation water use efficiency was higher in this treatment. Indeed, it increased about 18%, 14% and 7% for T3, T2 and T1, respectively when compared with surface drip irrigation. The results of the present study showed that SDI allows uniform soil moisture, minimize the evaporative loss and delivery water directly to the plant root zone and consequently increases use efficiency. Further research is needed in order to determine whether corn production with SDI is feasible in the arid region.展开更多
Maize-rice cropping systems are expanding in Bangladesh. Hybrid maize has increasing demand and value, particularly for poultry feed, while rice remains the traditional dominant starch staple food. Bangladesh maize yi...Maize-rice cropping systems are expanding in Bangladesh. Hybrid maize has increasing demand and value, particularly for poultry feed, while rice remains the traditional dominant starch staple food. Bangladesh maize yields (with average farm yields around 5.7 t·ha^-1) are among the highest found in Asia. Cool winter (Rabi) season maize followed by T. Aman (monsoon) rice is the major cropping system; however it is now becoming diversified with many other crops including potato. Financially, hybrid maize is far more profitable than boro (irrigated) rice, wheat, or most other competing winter season Rabi crops. Although maize is relatively problem-free in Bangladesh, some constraints are intensifying with increased concern over input supply and soil-related environmental sustainability. An array of new technologies for sustainable intensive maize production systems is emerging in Bangladesh and some are being promoted and adopted. Continued sustainability of hybrid maize production in Bangladesh depends on optimization of planting time, quality seed of appropriate hybrids, balanced use of nutrient inputs along with soil fertility conservation and other management, for which further research would be high priority.展开更多
In the last decades, there is a lot of discussion in many scientific fields, about the high importance of water as a basic element for the existence and the maintenance of life, aiming to the right and proper usage of...In the last decades, there is a lot of discussion in many scientific fields, about the high importance of water as a basic element for the existence and the maintenance of life, aiming to the right and proper usage of water in our everyday basic water-needs due to its limited resources and the growing demand. This research deals with simple ways and technological systems applicable in urban residential buildings for the better management of domestic fresh water, as far as its maintenance and sustainability. Main aim of the survey is the effective minimization of urban daily water usage. All measurements of water quantities have estimated in the imperial gallon (1 gallon = 4.546 liter), and in liter (1 liter = 0.2 gallon).展开更多
文摘Himalayan mountain system is distinguished globally for a rich biodiversity and for its role in regulating the climate of the South Asia. Traditional crop-livestock mixed farming in the Himalaya is highly dependent on forests for fodder and manure prepared from forest leaf litter and livestock excreta. Apart from sustaining farm production, forests provide a variety of other tangible and intangible benefits, which are critical for sustainable livelihood of not only 115 million mountain people, but also many more people living in the adjoining plains. Extension of agricultural land- use coupled with replacement of traditional staple food crops by cash crops and of multipurpose agroforestry trees by fruit trees are widespread changes. Cultivation of Fagopyrum esculentum, Fagopyrum tataricum, Panicum miliaceum, Setaria italica and Pisum arvense has been almost abandoned. Increasing stress on cash crops is driven by a socio-cultural change from subsistence to market economy facilitated by improvement in accessibility andsupplyofstaplefoodgrainsatsubsidizedpriceby the government. Farmers have gained substantial economic benefits from cash crops. However, loss of agrobiodiversity implies more risks to local livelihood in the events of downfall in market price/demand of cashcrops,terminationofsupplyofstaplefoodgrains at subsidized price, pest outbreaks in a cash crop dominated homogeneous landscape and abnormal climate years. Indigenous innovations enabling improvement in farm economy by conserving and/enhancing agrobiodiversity do exist, but are highly localized. The changes in agrobiodiversity are such that soil loss and run-off from the croplands have dramatically increased together with increase in local pressure on forests. As farm productivity is maintained with forest-based inputs, continued depletion of forest resources will result in poor economic returns from agriculture to local people, apart from loss of global benefits from Himalayan forests. Interventions including improvement in traditionalmanureandmanagementofon-farm trees, participatorydevelopmentofagroforestryindegraded forestlandsandpoliciesfavoringeconomicbenefitsto local people from non-timber forest products could reduce the risks of decline in agricultural biodiversity and associated threats to livelihoods and Himalayan ecosystems.
基金Knowledge Innovation Project of the Chinese Academy of Sciences,No.KZCX2-YW-307-02China Post-doctoral Science FoundationK.C.Wong Education Foundation,Hong Kong
文摘Water has become a key restricting factor of the urbanization process in developing arid areas.Based on qualitative and quantitative methods,we constructed an integrated in-dicator system to assess the status of water resources and urbanization system in arid area,and established an AHP model reformed by entropy technology to evaluate the temporal and spatial variations of water resources constraint intensity on urbanization.This model is ap-plied to the Hexi Corridor,a typical arid area in NW China.Results show that,water resources constraint intensity on urbanization in the Hexi Corridor is bigger in the east and smaller in the west.It has changed from the less strong constraint type into the strong constraint type from 1985 to 2005,yet it decreased appreciably in recent years.At present,most areas in the Hexi Corridor belong to the less strong or strong constraint type.Through rational adjustment of water resources and urbanization system,the Hexi Corridor can still promote water resources sustainable utilization and accelerate the urbanization process.This study suggests that the integrated assessment model of water resources constraint intensity on urbanization is an effective method to analyze the conflicts between water resources and urbanization system in arid area.
文摘The sustainability of agricultural production depends on conservation and appropriate use and management of scarce water resources especially in arid and semi-arid areas where irrigation is required for the production of food and cash crops. The objective of this paper was to evaluate the effects of surface and subsurface drip irrigation (SDI) at 5, 20 and 35 cm depths on water's dynamic in soil (Soil moisture distribution, water's stock in soil and irrigation water use efficiency) to produce maize in semiarid climates. Field study was conducted at the Higher Institute of Agronomy of Chott Meriem, Tunisia. The results indicated that soil moisture content under subsurface drip irrigation at 35 cm (T3) depth was more uniform compared to 5 cm (T1) and 20 cm (T2). Moreover, irrigation water use efficiency was higher in this treatment. Indeed, it increased about 18%, 14% and 7% for T3, T2 and T1, respectively when compared with surface drip irrigation. The results of the present study showed that SDI allows uniform soil moisture, minimize the evaporative loss and delivery water directly to the plant root zone and consequently increases use efficiency. Further research is needed in order to determine whether corn production with SDI is feasible in the arid region.
文摘Maize-rice cropping systems are expanding in Bangladesh. Hybrid maize has increasing demand and value, particularly for poultry feed, while rice remains the traditional dominant starch staple food. Bangladesh maize yields (with average farm yields around 5.7 t·ha^-1) are among the highest found in Asia. Cool winter (Rabi) season maize followed by T. Aman (monsoon) rice is the major cropping system; however it is now becoming diversified with many other crops including potato. Financially, hybrid maize is far more profitable than boro (irrigated) rice, wheat, or most other competing winter season Rabi crops. Although maize is relatively problem-free in Bangladesh, some constraints are intensifying with increased concern over input supply and soil-related environmental sustainability. An array of new technologies for sustainable intensive maize production systems is emerging in Bangladesh and some are being promoted and adopted. Continued sustainability of hybrid maize production in Bangladesh depends on optimization of planting time, quality seed of appropriate hybrids, balanced use of nutrient inputs along with soil fertility conservation and other management, for which further research would be high priority.
文摘In the last decades, there is a lot of discussion in many scientific fields, about the high importance of water as a basic element for the existence and the maintenance of life, aiming to the right and proper usage of water in our everyday basic water-needs due to its limited resources and the growing demand. This research deals with simple ways and technological systems applicable in urban residential buildings for the better management of domestic fresh water, as far as its maintenance and sustainability. Main aim of the survey is the effective minimization of urban daily water usage. All measurements of water quantities have estimated in the imperial gallon (1 gallon = 4.546 liter), and in liter (1 liter = 0.2 gallon).