HVFA (high-volume fly ash) concrete could be a sustainable way for by-product utilization to conserve natural resources and protect environment. HVFA concrete can play the role of a high-performance material that ma...HVFA (high-volume fly ash) concrete could be a sustainable way for by-product utilization to conserve natural resources and protect environment. HVFA concrete can play the role of a high-performance material that may be comparable to the conventional Portland cement concrete. The results of the research programme concerning the relationships between the composition of concrete (w/b ratio, fly ash content and type of cement) and their physical and mechanical properties are presented and discussed in the paper. It is found that the introduction of high-volume fly ash into concrete has caused a decrease in compressive strength at the early age of storage. The significant increase in strength was observed between 28 days and 90 days of curing. The high-volume fly ash concretes were characterized with lower water absorbability and sorptivity than control concrete.展开更多
This paper presents a study carried out on infilled reinforced concrete beams for sustainable construction. In reinforced concrete beams, less stressed concrete below neutral axis can be replaced by some light weight ...This paper presents a study carried out on infilled reinforced concrete beams for sustainable construction. In reinforced concrete beams, less stressed concrete below neutral axis can be replaced by some light weight material to reduce the weight of the structure and also achieve the economy. The used infilled material is brick. Sustainability can be achieved by replacing the partially used concrete. By saving concrete, the authors save cement, which reduces the green house gases emissions. So it is considered as environment friendly. Since infilled beam acts like a layered member, there needs a theory to analyze it. Method of initial functions is used for the analysis of the infilled RC (reinforced concrete) beams. This method is successfully applied on infilled beam. Results show that physical conditions are verified for infilled beam.展开更多
This paper focuses on cement composites based on waste fine aggregate obtained from hydroclassification all-in-aggregate in the Central Pomerania region in northern Poland. In the world there are regions with poor sup...This paper focuses on cement composites based on waste fine aggregate obtained from hydroclassification all-in-aggregate in the Central Pomerania region in northern Poland. In the world there are regions with poor supplies of coarse aggregate, which is one of the most essential raw materials used for production of ordinary concrete. In these regions, instead of coarse aggregate, there are often very large deposits of fine aggregate such as natural sand and fine all-in-aggregate. These raw materials may be used for concrete production of standard mechanical properties. Manufacturing concrete based on locally available fine aggregate is inexpensive which encourages the local production of fine aggregate cement composites instead of ordinary concrete, requiring gravel transported from distant places.展开更多
Construction is one of the largest users of energy, material resources and water and it is a formidable polluter. One of the major materials used in construction is concrete and ordinary concrete contains about 12% ce...Construction is one of the largest users of energy, material resources and water and it is a formidable polluter. One of the major materials used in construction is concrete and ordinary concrete contains about 12% cement which is a major producer of greenhouse gas in the world. The use of waste materials as partial replacement of cement in concrete reduces greenhouse gases, frees up land fill space, and reduces raw materials consumption. This contributes towards sustainable development, as in a sustainable society, nature is not subject to systematically increasing concentrations of substances extracted from the earth's crust. This research work explores the possibility of replacing some percentage of cement in concrete with marble sludge powder to produce lightweight concrete. This was achieved by determining the compressive strength and some hardened properties of concrete like sorptivity and carbonation with marble sludge. The results so far have been able to prove that lightweight concrete can be produced when some percentage of cement is replaced with this waste.展开更多
文摘HVFA (high-volume fly ash) concrete could be a sustainable way for by-product utilization to conserve natural resources and protect environment. HVFA concrete can play the role of a high-performance material that may be comparable to the conventional Portland cement concrete. The results of the research programme concerning the relationships between the composition of concrete (w/b ratio, fly ash content and type of cement) and their physical and mechanical properties are presented and discussed in the paper. It is found that the introduction of high-volume fly ash into concrete has caused a decrease in compressive strength at the early age of storage. The significant increase in strength was observed between 28 days and 90 days of curing. The high-volume fly ash concretes were characterized with lower water absorbability and sorptivity than control concrete.
文摘This paper presents a study carried out on infilled reinforced concrete beams for sustainable construction. In reinforced concrete beams, less stressed concrete below neutral axis can be replaced by some light weight material to reduce the weight of the structure and also achieve the economy. The used infilled material is brick. Sustainability can be achieved by replacing the partially used concrete. By saving concrete, the authors save cement, which reduces the green house gases emissions. So it is considered as environment friendly. Since infilled beam acts like a layered member, there needs a theory to analyze it. Method of initial functions is used for the analysis of the infilled RC (reinforced concrete) beams. This method is successfully applied on infilled beam. Results show that physical conditions are verified for infilled beam.
文摘This paper focuses on cement composites based on waste fine aggregate obtained from hydroclassification all-in-aggregate in the Central Pomerania region in northern Poland. In the world there are regions with poor supplies of coarse aggregate, which is one of the most essential raw materials used for production of ordinary concrete. In these regions, instead of coarse aggregate, there are often very large deposits of fine aggregate such as natural sand and fine all-in-aggregate. These raw materials may be used for concrete production of standard mechanical properties. Manufacturing concrete based on locally available fine aggregate is inexpensive which encourages the local production of fine aggregate cement composites instead of ordinary concrete, requiring gravel transported from distant places.
文摘Construction is one of the largest users of energy, material resources and water and it is a formidable polluter. One of the major materials used in construction is concrete and ordinary concrete contains about 12% cement which is a major producer of greenhouse gas in the world. The use of waste materials as partial replacement of cement in concrete reduces greenhouse gases, frees up land fill space, and reduces raw materials consumption. This contributes towards sustainable development, as in a sustainable society, nature is not subject to systematically increasing concentrations of substances extracted from the earth's crust. This research work explores the possibility of replacing some percentage of cement in concrete with marble sludge powder to produce lightweight concrete. This was achieved by determining the compressive strength and some hardened properties of concrete like sorptivity and carbonation with marble sludge. The results so far have been able to prove that lightweight concrete can be produced when some percentage of cement is replaced with this waste.