The problem of guaranteed cost control for the networked control systems(NCSs) with time-varying delays, time-varying sampling intervals and signals quantization was investigated, wherein the physical plant was contin...The problem of guaranteed cost control for the networked control systems(NCSs) with time-varying delays, time-varying sampling intervals and signals quantization was investigated, wherein the physical plant was continuous-time one, and the control input was discrete-time one. By using an input delay approach and a sector bound method, the network induced delays, quantization parameter and sampling intervals were presented in one framework in the case of the state and the control input by quantized in a logarithmic form. A novel Lyapunov function with discontinuity, which took full advantages of the NCS characteristic information, was exploited. In addition, it was shown that Lyapunov function decreased at the jump instants. Furthermore, the Leibniz-Newton formula and free-weighting matrix methods were used to obtain the guaranteed cost controller design conditions which were dependent on the NCS characteristic information. A numerical example was used to illustrate the effectiveness of the proposed methods.展开更多
In this paper the semilinear wave equation with homogeneous Dirichlet boundary condition having a locally distributed controller is considered, and the rapid exact controllability of this system is obtained by changin...In this paper the semilinear wave equation with homogeneous Dirichlet boundary condition having a locally distributed controller is considered, and the rapid exact controllability of this system is obtained by changing the shape and/or the location of the controller under proper conditions. For this purpose, the author derives an (rapid) observability inequality for wave equations with linear time-variant potential by means of the energy estimate. The main difference of the method from the previous ones is that any unique continuation property of the corresponding linear time-variant wave equations is not needed.展开更多
基金Project(61104106) supported by the National Natural Science Foundation of ChinaProject(201202156) supported by the Natural Science Foundation of Liaoning Province,ChinaProject(LJQ2012100) supported by Program for Liaoning Excellent Talents in University(LNET)
文摘The problem of guaranteed cost control for the networked control systems(NCSs) with time-varying delays, time-varying sampling intervals and signals quantization was investigated, wherein the physical plant was continuous-time one, and the control input was discrete-time one. By using an input delay approach and a sector bound method, the network induced delays, quantization parameter and sampling intervals were presented in one framework in the case of the state and the control input by quantized in a logarithmic form. A novel Lyapunov function with discontinuity, which took full advantages of the NCS characteristic information, was exploited. In addition, it was shown that Lyapunov function decreased at the jump instants. Furthermore, the Leibniz-Newton formula and free-weighting matrix methods were used to obtain the guaranteed cost controller design conditions which were dependent on the NCS characteristic information. A numerical example was used to illustrate the effectiveness of the proposed methods.
文摘In this paper the semilinear wave equation with homogeneous Dirichlet boundary condition having a locally distributed controller is considered, and the rapid exact controllability of this system is obtained by changing the shape and/or the location of the controller under proper conditions. For this purpose, the author derives an (rapid) observability inequality for wave equations with linear time-variant potential by means of the energy estimate. The main difference of the method from the previous ones is that any unique continuation property of the corresponding linear time-variant wave equations is not needed.