Broadband PLC (power line communication) technology is a main factor of the development of digital convergence in the indoor network. It uses the already existing power cable infrastructure for communication purpose...Broadband PLC (power line communication) technology is a main factor of the development of digital convergence in the indoor network. It uses the already existing power cable infrastructure for communication purposes. The EM (electromagnetic) field radiating from the cable could, however, disturb other communication systems, and thus should be evaluated. The MoM (method of moment) and the FEM (finite element method) have been studied to estimate the EVI field emitted from the power cable. However, the M oM is difficult to treat the dielectric material of the cable and the FEM is time consuming. This paperpresents a new approach to estimate the radiated EM fields caused by PLC sy stems from the CM current along the cable, based on the transmission line theory. The proposed model has the advantage of using the measured primary parameters of the cable. An experimental analysis of the EM radiation distribution is also presented. A comparison showed that the model results agree quite well with the measurements performed in this study.展开更多
In this paper, a novel structure of linear-in-dB gain control is introduced. Based on this structure, a wideband variable gain low noise amplifier (VGLNA) has been designed and implemented in 0.18μm RF CMOS technol...In this paper, a novel structure of linear-in-dB gain control is introduced. Based on this structure, a wideband variable gain low noise amplifier (VGLNA) has been designed and implemented in 0.18μm RF CMOS technology. The measured resuhs show a good linear-in-dB gain control characteristic with 15 dB dynamic range. It can operate in the frequency range of MHz and consumes 30mW from 1.8V power supply. The minimum noise figure is 4.1 dB at the 48 - 860 maximum gain and the input P1dB is greater than - 16.5dBm.展开更多
A novel Call Admission Control(CAC)scheme is proposed for multimedia CDMA systems.The effectivebandwidth of real time calls is reserved in the CAC with the consideration of active factors.The admission of non-real tim...A novel Call Admission Control(CAC)scheme is proposed for multimedia CDMA systems.The effectivebandwidth of real time calls is reserved in the CAC with the consideration of active factors.The admission of non-real timecalls is controlled by the system according to the residual effective bandwidth left from real time calls.Simulation resultshave shown that the novel CAC has greatly enlarged the admission region for real time calls and make the transmission de-lay of non-real time calls under an acceptable level.展开更多
A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser is proposed and demonstrated. The multi-wavelength fiber laser generates the multi-taps of the microwave...A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser is proposed and demonstrated. The multi-wavelength fiber laser generates the multi-taps of the microwave photonic filter (MPF). In order to obtain notch frequency response, a Fourier-domain optical processor (FD-OP) is introduced to con- trol the amplitude and phase of the optical carrier and phase modulation sidebands. By adjusting the polarization con- troller (PC), different numbers of taps are got, such as 6, 8, 10 and 121 And the wavelength-spacing of the multi-wavelength laser is 0.4 nm. The bandwidth of the notch filter is changed by adjusting the number of taps and the corresponding bandwidths are 4.41 GHz, 3.30 GHz, 2.64 GHz and 2.19 GHz, respectively. With the additional phase shift introduced by FD-OP, the notch position is continuously ttmed in the whole free spectral range (FSR) of 27.94 GHz. The center frequency of the notch filter can be continuously tuned from 13.97 GHz to 41.91 GHz.展开更多
文摘Broadband PLC (power line communication) technology is a main factor of the development of digital convergence in the indoor network. It uses the already existing power cable infrastructure for communication purposes. The EM (electromagnetic) field radiating from the cable could, however, disturb other communication systems, and thus should be evaluated. The MoM (method of moment) and the FEM (finite element method) have been studied to estimate the EVI field emitted from the power cable. However, the M oM is difficult to treat the dielectric material of the cable and the FEM is time consuming. This paperpresents a new approach to estimate the radiated EM fields caused by PLC sy stems from the CM current along the cable, based on the transmission line theory. The proposed model has the advantage of using the measured primary parameters of the cable. An experimental analysis of the EM radiation distribution is also presented. A comparison showed that the model results agree quite well with the measurements performed in this study.
文摘In this paper, a novel structure of linear-in-dB gain control is introduced. Based on this structure, a wideband variable gain low noise amplifier (VGLNA) has been designed and implemented in 0.18μm RF CMOS technology. The measured resuhs show a good linear-in-dB gain control characteristic with 15 dB dynamic range. It can operate in the frequency range of MHz and consumes 30mW from 1.8V power supply. The minimum noise figure is 4.1 dB at the 48 - 860 maximum gain and the input P1dB is greater than - 16.5dBm.
文摘A novel Call Admission Control(CAC)scheme is proposed for multimedia CDMA systems.The effectivebandwidth of real time calls is reserved in the CAC with the consideration of active factors.The admission of non-real timecalls is controlled by the system according to the residual effective bandwidth left from real time calls.Simulation resultshave shown that the novel CAC has greatly enlarged the admission region for real time calls and make the transmission de-lay of non-real time calls under an acceptable level.
基金supported by the National Natural Science Foundation of China(No.11444001)the Municipal Natural Science Foundation of Tianjin in China(No.14JCYBJC16500)
文摘A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser is proposed and demonstrated. The multi-wavelength fiber laser generates the multi-taps of the microwave photonic filter (MPF). In order to obtain notch frequency response, a Fourier-domain optical processor (FD-OP) is introduced to con- trol the amplitude and phase of the optical carrier and phase modulation sidebands. By adjusting the polarization con- troller (PC), different numbers of taps are got, such as 6, 8, 10 and 121 And the wavelength-spacing of the multi-wavelength laser is 0.4 nm. The bandwidth of the notch filter is changed by adjusting the number of taps and the corresponding bandwidths are 4.41 GHz, 3.30 GHz, 2.64 GHz and 2.19 GHz, respectively. With the additional phase shift introduced by FD-OP, the notch position is continuously ttmed in the whole free spectral range (FSR) of 27.94 GHz. The center frequency of the notch filter can be continuously tuned from 13.97 GHz to 41.91 GHz.