This paper presents a novel full-chip scalable routing framework that simultaneously considers the routing congestion and the circuit performance. In order to bridge the gap, the presented framework calls the detailed...This paper presents a novel full-chip scalable routing framework that simultaneously considers the routing congestion and the circuit performance. In order to bridge the gap, the presented framework calls the detailed router immediately after a global route is extracted. With the interleaving mode of global routing immediately followed by detailed routing, accurate routing resource and congestion information can be obtained, which provides valuable guidance for the following global routing process. The framework features the fast pattern and framed shortest path global router,a maze-based congestion-driven detailed router, and better interaction between the two routers. In the framework, timing critical nets can be assigned higher priority for performance concern, and different net ordering techniques can be adopted for different routing objectives. The framework is tested on a set of commonly used benchmark circuits and compared with a previous multilevel routing framework. Experimental results show that the presented framework obtains significantly better routing solutions than the previous one considering circuit performance, routing completion rate, and runtime.展开更多
Ti-47Al-2Cr-2Nb-0.15B alloy (atom fraction) was extruded at temperatures(Tα) of 1250 and 1330 ℃, respectively. The method of adding a thermal insulating layer was used to overcome the problem associated with the...Ti-47Al-2Cr-2Nb-0.15B alloy (atom fraction) was extruded at temperatures(Tα) of 1250 and 1330 ℃, respectively. The method of adding a thermal insulating layer was used to overcome the problem associated with the flow stress mismatch between the can and the billet during extrusion. Effects of two kinds of insulations, ZrO2 powders and silica fibers, on the quality of extrude bar along the radial direction were studied, and the process parameters were optimized by combining with finite element method (FEM). Tensile properties of the extruded alloy at room and elevated temperature were tested. The results show that the silica fibers has better thermal insulating property than ZrO2 powders. The temperature distribution in radial is more homogeneous using silica fibers. The alloy has a good balance of yield strength and room temperature ductility and the values are 680MPa and 3.5%, respectively.展开更多
As emerging artificial biomimetic membranes, smart or intelligent membranes that are able to respond to environmental stimuli are attracting ever-increasing interests from various fields. Their permeation properties i...As emerging artificial biomimetic membranes, smart or intelligent membranes that are able to respond to environmental stimuli are attracting ever-increasing interests from various fields. Their permeation properties including hydraulic permeability and diffusional permeability can be dramatically controlled or adjusted self-regulatively in response to small chemical and/or physical stimuli in their environments. Such environmental stimuli-responsive smart membranes could find myriad applications in numerous fields ranging from controlled release to separations. Here the trans-membrane mass-transfer and membrane separation is introduced as the beginning to initiate the requirement of smart membranes, and then bio-inspired design of environmental stimuli-responsive smart membranes and four essential elements for smart membranes are introduced and discussed. Next, smart membrane types and their applications as smart tools for controllable mass-transfer in controlled release and separations are reviewed. The research tooics in the near future are also suggested.展开更多
Parameters of the power source used to control PV-10 piezoelectric crystal valve are following DC output voltage: 0 - 120 V, continuously controllable, linear enlargement factor of input direct current voltage: appr...Parameters of the power source used to control PV-10 piezoelectric crystal valve are following DC output voltage: 0 - 120 V, continuously controllable, linear enlargement factor of input direct current voltage: approximate 25 times, the accuracy of DC output voltage: ±5%, manual control and automatic control.展开更多
The probe absorption-dispersion spectra of a radio-frequency (RF)-driven five-level atom embedded in a photonic crystal are investigated by considering the isotropic double-band photonic-bandogap (PBG) reservoir. ...The probe absorption-dispersion spectra of a radio-frequency (RF)-driven five-level atom embedded in a photonic crystal are investigated by considering the isotropic double-band photonic-bandogap (PBG) reservoir. In the model used, the two transitions are, respectively, coupled by leading to some curious phenomena. Numerical simulations the upper and lower bands in such a PBG material, thus are performed for the optical spectra. It is found that when one transition frequency is inside the band gap and the other is outside the gap, there emerge three peaks in the absorption spectra. However, for the case that two transition frequencies lie inside or outside the band gap, the spectra display four absorption profiles. Especially, there appear two sharp peaks in the spectra when both transition frequencies exist inside the band gap. The influences of the intensity and frequency of the RF-driven field on the absorptive and dispersive response are analyzed under different band-edge positions. It is found that a transparency window appears in the absorption spectra and is accompanied by a very steep variation of the dispersion profile by adjusting system parameters. These results show that the absorption-dispersion properties of the system depend strongly on the RF-induced quantum interference and the density of states (DOS) of the PBG reservoir.展开更多
Digital control of a general-purpose switching power supply is one of the key technologies to perform the high reliability and the intelligent function demanded for the next generation. The contribution of this paper ...Digital control of a general-purpose switching power supply is one of the key technologies to perform the high reliability and the intelligent function demanded for the next generation. The contribution of this paper is the development of a digital control-based switching power supply. In the developed system, the generation method of the optimal voltage reference to eliminate the limit cycle oscillation of output voltage due to the AD/DA resolution is proposed. In the proposed method, the variation of the input power source voltage can be also compensated. The effectiveness of the proposed optimal reference generation method is experimentally verified.展开更多
This paper investigates controllability of discrete-time multi-agent systems with multiple leaders on fixed networks. The leaders are particular agents playing a part in external inputs to steer other member agents. T...This paper investigates controllability of discrete-time multi-agent systems with multiple leaders on fixed networks. The leaders are particular agents playing a part in external inputs to steer other member agents. The followers can arrive at any predetermined configuration by regulating the behaviors of the leaders. Some sufficient and necessary conditions are proposed for the controllability of discrete-time multi-agent systems with multiple leaders. Moreover, the case with isolated agents is discussed. Numerical examples and simulations are proposed to illustrate the theoretical results we established.展开更多
Controllable growth of high-quality hybrid nanostructures is highly desirable for the fabrication of hierarchical, complex and multifunctional devices. Here, PdAg alloys have been controllably grown at different locat...Controllable growth of high-quality hybrid nanostructures is highly desirable for the fabrication of hierarchical, complex and multifunctional devices. Here, PdAg alloys have been controllably grown at different locations on gold nanorods, producing dumbbell-like nanostructures with PdAg at the ends of the gold nanorods or branched nanostructures with PdAg grown almost perpendicular to the gold nanorods. The nucleation sites of PdAg alloys on the gold nanorods can be effectively tuned by varying the concentrations of H2PdC14, AgNO3 and cetyltrimethylammonium bromide (CTAB). The dumbbell-like and branched nanostructures were characterized by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), line-scanning energy-dispersive X-ray spectros-copy (EDS), X-ray photoelectron spectroscopy (XPS) and UV-Vis absorption spectroscopy. Their electrocatalytic performance was evaluated using ethanol oxidation as a probe reaction. The dumbbelMike nanostructures show a better anti-poisoning performance, but a worse electrochemical activity than the branched ones. The results provide guidelines for the controlled growth of complicated nanostructures for either fundamental studies or potential applications.展开更多
文摘This paper presents a novel full-chip scalable routing framework that simultaneously considers the routing congestion and the circuit performance. In order to bridge the gap, the presented framework calls the detailed router immediately after a global route is extracted. With the interleaving mode of global routing immediately followed by detailed routing, accurate routing resource and congestion information can be obtained, which provides valuable guidance for the following global routing process. The framework features the fast pattern and framed shortest path global router,a maze-based congestion-driven detailed router, and better interaction between the two routers. In the framework, timing critical nets can be assigned higher priority for performance concern, and different net ordering techniques can be adopted for different routing objectives. The framework is tested on a set of commonly used benchmark circuits and compared with a previous multilevel routing framework. Experimental results show that the presented framework obtains significantly better routing solutions than the previous one considering circuit performance, routing completion rate, and runtime.
文摘Ti-47Al-2Cr-2Nb-0.15B alloy (atom fraction) was extruded at temperatures(Tα) of 1250 and 1330 ℃, respectively. The method of adding a thermal insulating layer was used to overcome the problem associated with the flow stress mismatch between the can and the billet during extrusion. Effects of two kinds of insulations, ZrO2 powders and silica fibers, on the quality of extrude bar along the radial direction were studied, and the process parameters were optimized by combining with finite element method (FEM). Tensile properties of the extruded alloy at room and elevated temperature were tested. The results show that the silica fibers has better thermal insulating property than ZrO2 powders. The temperature distribution in radial is more homogeneous using silica fibers. The alloy has a good balance of yield strength and room temperature ductility and the values are 680MPa and 3.5%, respectively.
基金Supported by the National Basic Research Program of China (2009CB623407), and the National Natural Science Foundation of China (20825622, 20806049, 20906064, 20990220, 21036002, 21076127, 21136006).
文摘As emerging artificial biomimetic membranes, smart or intelligent membranes that are able to respond to environmental stimuli are attracting ever-increasing interests from various fields. Their permeation properties including hydraulic permeability and diffusional permeability can be dramatically controlled or adjusted self-regulatively in response to small chemical and/or physical stimuli in their environments. Such environmental stimuli-responsive smart membranes could find myriad applications in numerous fields ranging from controlled release to separations. Here the trans-membrane mass-transfer and membrane separation is introduced as the beginning to initiate the requirement of smart membranes, and then bio-inspired design of environmental stimuli-responsive smart membranes and four essential elements for smart membranes are introduced and discussed. Next, smart membrane types and their applications as smart tools for controllable mass-transfer in controlled release and separations are reviewed. The research tooics in the near future are also suggested.
文摘Parameters of the power source used to control PV-10 piezoelectric crystal valve are following DC output voltage: 0 - 120 V, continuously controllable, linear enlargement factor of input direct current voltage: approximate 25 times, the accuracy of DC output voltage: ±5%, manual control and automatic control.
基金Supported by the National Natural Science Foundation of China under Grant Nos.91021011,10975054,11004069,and 10874050the Doctoral Foundation of the Ministry of Education of China under Grant Nos.200804870051,20100142120081the Innovation Foundation from Huazhong University of Science and Technology under Grant No.2010MS074
文摘The probe absorption-dispersion spectra of a radio-frequency (RF)-driven five-level atom embedded in a photonic crystal are investigated by considering the isotropic double-band photonic-bandogap (PBG) reservoir. In the model used, the two transitions are, respectively, coupled by leading to some curious phenomena. Numerical simulations the upper and lower bands in such a PBG material, thus are performed for the optical spectra. It is found that when one transition frequency is inside the band gap and the other is outside the gap, there emerge three peaks in the absorption spectra. However, for the case that two transition frequencies lie inside or outside the band gap, the spectra display four absorption profiles. Especially, there appear two sharp peaks in the spectra when both transition frequencies exist inside the band gap. The influences of the intensity and frequency of the RF-driven field on the absorptive and dispersive response are analyzed under different band-edge positions. It is found that a transparency window appears in the absorption spectra and is accompanied by a very steep variation of the dispersion profile by adjusting system parameters. These results show that the absorption-dispersion properties of the system depend strongly on the RF-induced quantum interference and the density of states (DOS) of the PBG reservoir.
文摘Digital control of a general-purpose switching power supply is one of the key technologies to perform the high reliability and the intelligent function demanded for the next generation. The contribution of this paper is the development of a digital control-based switching power supply. In the developed system, the generation method of the optimal voltage reference to eliminate the limit cycle oscillation of output voltage due to the AD/DA resolution is proposed. In the proposed method, the variation of the input power source voltage can be also compensated. The effectiveness of the proposed optimal reference generation method is experimentally verified.
基金Supported in part by the National Natural Science Foundation of China under Grant No. 61104140the Fundamental Research Funds for the Central Universities (HUST: Grant No. 2011JC055)+4 种基金the Research Fund for the Doctoral Program of Higher Education (RFDP) under Grant No. 20100142120023the Natural Science Foundation of Hubei Province of China under Grant No. 2011CDB042the Beijing Natural Science Foundation Program (1102016)the Science and Technology Development Plan Project of Beijing Education Commission(No. KM201310009011)Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR201108055)
文摘This paper investigates controllability of discrete-time multi-agent systems with multiple leaders on fixed networks. The leaders are particular agents playing a part in external inputs to steer other member agents. The followers can arrive at any predetermined configuration by regulating the behaviors of the leaders. Some sufficient and necessary conditions are proposed for the controllability of discrete-time multi-agent systems with multiple leaders. Moreover, the case with isolated agents is discussed. Numerical examples and simulations are proposed to illustrate the theoretical results we established.
基金This work was supported by the Natural Science Foundation of China (Nos. 20801019, 21071055, 21172076), New Century Excellent Talents in University (No. NCET-10-0369), Shandong Provincial Natural Science Foundation for Distinguished Young Scholar (No. JQ201205), Independent Innovation Foundations of Shandong University (No. 2012 ZD007), new-faculty start-up funding in Shandong University and Key Laboratory of Fuel Cell Technology of Guangdong Province.
文摘Controllable growth of high-quality hybrid nanostructures is highly desirable for the fabrication of hierarchical, complex and multifunctional devices. Here, PdAg alloys have been controllably grown at different locations on gold nanorods, producing dumbbell-like nanostructures with PdAg at the ends of the gold nanorods or branched nanostructures with PdAg grown almost perpendicular to the gold nanorods. The nucleation sites of PdAg alloys on the gold nanorods can be effectively tuned by varying the concentrations of H2PdC14, AgNO3 and cetyltrimethylammonium bromide (CTAB). The dumbbell-like and branched nanostructures were characterized by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), line-scanning energy-dispersive X-ray spectros-copy (EDS), X-ray photoelectron spectroscopy (XPS) and UV-Vis absorption spectroscopy. Their electrocatalytic performance was evaluated using ethanol oxidation as a probe reaction. The dumbbelMike nanostructures show a better anti-poisoning performance, but a worse electrochemical activity than the branched ones. The results provide guidelines for the controlled growth of complicated nanostructures for either fundamental studies or potential applications.