Platinum and palladium(PtPd)alloy nanoparticles(NPs)are excellent catalysts for direct methanol fuel cells.In this study,we developed PtPd alloy NPs through the co‐reduction of K2PtCl4and Na2PdCl4in a polyol synthesi...Platinum and palladium(PtPd)alloy nanoparticles(NPs)are excellent catalysts for direct methanol fuel cells.In this study,we developed PtPd alloy NPs through the co‐reduction of K2PtCl4and Na2PdCl4in a polyol synthesis environment.During the reaction,the feed molar ratio of the two precursors was carried over to the final products,which have a narrow size distribution with a mean size of approximately4nm.The catalytic activity for methanol oxidation reactions possible depends closely on the composition of as‐prepared PtPd alloy NPs,and the NPs with a Pt atomic percentage of approximately75%result in higher activity and stability with a mass specific activity that is7times greater than that of commercial Pt/C catalysts.The results indicate that through composition control,PtPd alloy NPs can improve the effectiveness of catalytic performance.展开更多
MIL-53(Fe)was synthesized using a“modulator approach”that utilizes acetic acid(HAc)as an additive to control the size and morphology of the resulting crystals.We demonstrate that after activation under vaccum at 100...MIL-53(Fe)was synthesized using a“modulator approach”that utilizes acetic acid(HAc)as an additive to control the size and morphology of the resulting crystals.We demonstrate that after activation under vaccum at 100℃,the MIL-53(Fe)functions well for H2S selective oxidation.The introduction of acetic acid in the presence of benzene-1,4-dicarboxylic acid(H2BDC)would result in a series of MIL-53(Fe)nanocrystals(denoted as MIL-53(Fe)-xH,x stands for the volume of added HAc with morphology evoluting from irregular particles to short hexagonal columns.The vacuum treatment facilitates the removal of acetate groups,thus generating Fe3+Lewis acid sites.Consequently,the resulted MIL-53(Fe)-xH exhibits good catalytic activity(98%H2S conversion and 92%sulfur selectivity)at moderate reaction temperatures(100–190℃).The MIL-53(Fe)-5H is superior to the traditional iron-based catalysts,showing stable performance in a test period of 55 h.展开更多
The electrochemical oxidation of galena in collectorless and collector flotation systems, particularly in strong alkaline media, was studied. The results show that, with pH value higher than 12.5 and potentials below ...The electrochemical oxidation of galena in collectorless and collector flotation systems, particularly in strong alkaline media, was studied. The results show that, with pH value higher than 12.5 and potentials below 0.17 V, the oxidation products of galena are elemental sulfur and HPbO - 2. Elemental sulfur was present on the mineral surface in excess of oxidized lead species due to dissolution of HPbO - 2, which is beneficial to the flotation of galena. Under the same conditions, sphalerite and pyrite were depressed as a result of significant surface oxidation. Diethyldithiocarbamate (DDTC) was found to be the most suitable collector for galena flotation in strongly alkaline media. The very potential produced hydrophobic PbD 2-the surface reaction product of DDTC with galena, is 0 to 0.2 V. Meantime DDTC can depress the surface over oxidation of galena. Investigations also indicate that, in the range of -0.9 V to 0.6 V, hydrophobic PbD 2 can be firmly adsorbed on galena.展开更多
Transition-metal oxides have attracted much attention due to its abundant crystalline phases and intriguing physical properties. However, some of these compounds are difficult to be fabricated directly in film form du...Transition-metal oxides have attracted much attention due to its abundant crystalline phases and intriguing physical properties. However, some of these compounds are difficult to be fabricated directly in film form due to the ease of valence variation of transition-metal elements.In this work, we reveal the reversible structural transition between SrVO3 and Sr2V2O7 films via thermal treatment in oxygen atmosphere or in vacuum. Based on this, Sr2V2O7 epitaxial films are successfully synthesized and studied. Property characterizations show that the semitransparent and metallic SrVO3 could reversibly switch into transparent and insulating Sr2V2O7, implying potential applications in controllable electronic and optical devices.展开更多
A simple method for the controllable hydrothermal synthesis of nanocrystalline anatase TiO2(nc-TiO2) particles involving the selection of suitable organic alkali peptizing agents is reported.A dye-sensitized solar cel...A simple method for the controllable hydrothermal synthesis of nanocrystalline anatase TiO2(nc-TiO2) particles involving the selection of suitable organic alkali peptizing agents is reported.A dye-sensitized solar cell(DSSC) with square-like nc-TiO2 particles with side lengths about 8-13 nm-prepared using tetraethylammonium hydroxide(TEAOH)-in the photoelectrode showed higher photovoltaic performance than two other DSSCs with square-like nc-TiO2 particles with side lengths about 7-10 nm-prepared using tetrabutylammonium hydroxide-or elongated nc-TiO2 particles with lengths about 18-35 nm and width about 10 18 nm-prepared using tetramethylammonium hydroxide(TMAOH)-in the photoelectrodes.When a scattering layer prepared from sub-micron size spheres or cone-like nc-TiO2 particles-synthesized using a higher concentration of TMAOH-was added on top of the photoelectrode fabricated from nc-TiO2 synthesized with TEAOH,the energy conversion efficiency of the DSSC was markedly increased from 6.77% to 8.18%.展开更多
Through meticulous design, a Li-lacking Cr2O5 cathode is physically mixed with Li-rich Li(1.2)Ni(0.13)Co(0.13)Mn(0.54)O2(LNCM) cathode to form composite cathodes LNCM@x Cr2O5(x = 0, 0.1, 0.2, 0.3, 0.35, 0.4...Through meticulous design, a Li-lacking Cr2O5 cathode is physically mixed with Li-rich Li(1.2)Ni(0.13)Co(0.13)Mn(0.54)O2(LNCM) cathode to form composite cathodes LNCM@x Cr2O5(x = 0, 0.1, 0.2, 0.3, 0.35, 0.4, mass ratio) in order to make use of the excess lithium produced by the Li-rich component in the first charge-discharge process. The initial coulombic efficiency(ICE) of LNCM half-cell has been significantly increased from75.5%(x = 0) to 108.9%(x = 0.35). A novel full-cell comprising LNCM@Cr2O5composite cathode and Li4Ti5O(12) anode has been developed. Such electrode accordance, i.e., LNCM@Cr2O5//Li4Ti5O(12)("L-cell"), shows a particularly high ICE of97.7%. The "L-cell" can transmit an outstanding reversible capacity up to 250 mA h g-1and has 94% capacity retention during 50 cycles. It also has superior rate capacities as high as122 and 94 mA h g-(-1)at 1.25 and 2.5 A g-(-1)current densities,which are even better in comparison of Li-rich//graphite fullcell("G-cell"). The high performance of "L-cell" benefiting from the well-designed coulombic efficiency accordance mechanism displays a great potential for fast charge-discharge applications in future high-energy lithium ion batteries.展开更多
基金supported by the National Natural Science Foundation of China (21373272)~~
文摘Platinum and palladium(PtPd)alloy nanoparticles(NPs)are excellent catalysts for direct methanol fuel cells.In this study,we developed PtPd alloy NPs through the co‐reduction of K2PtCl4and Na2PdCl4in a polyol synthesis environment.During the reaction,the feed molar ratio of the two precursors was carried over to the final products,which have a narrow size distribution with a mean size of approximately4nm.The catalytic activity for methanol oxidation reactions possible depends closely on the composition of as‐prepared PtPd alloy NPs,and the NPs with a Pt atomic percentage of approximately75%result in higher activity and stability with a mass specific activity that is7times greater than that of commercial Pt/C catalysts.The results indicate that through composition control,PtPd alloy NPs can improve the effectiveness of catalytic performance.
文摘MIL-53(Fe)was synthesized using a“modulator approach”that utilizes acetic acid(HAc)as an additive to control the size and morphology of the resulting crystals.We demonstrate that after activation under vaccum at 100℃,the MIL-53(Fe)functions well for H2S selective oxidation.The introduction of acetic acid in the presence of benzene-1,4-dicarboxylic acid(H2BDC)would result in a series of MIL-53(Fe)nanocrystals(denoted as MIL-53(Fe)-xH,x stands for the volume of added HAc with morphology evoluting from irregular particles to short hexagonal columns.The vacuum treatment facilitates the removal of acetate groups,thus generating Fe3+Lewis acid sites.Consequently,the resulted MIL-53(Fe)-xH exhibits good catalytic activity(98%H2S conversion and 92%sulfur selectivity)at moderate reaction temperatures(100–190℃).The MIL-53(Fe)-5H is superior to the traditional iron-based catalysts,showing stable performance in a test period of 55 h.
文摘The electrochemical oxidation of galena in collectorless and collector flotation systems, particularly in strong alkaline media, was studied. The results show that, with pH value higher than 12.5 and potentials below 0.17 V, the oxidation products of galena are elemental sulfur and HPbO - 2. Elemental sulfur was present on the mineral surface in excess of oxidized lead species due to dissolution of HPbO - 2, which is beneficial to the flotation of galena. Under the same conditions, sphalerite and pyrite were depressed as a result of significant surface oxidation. Diethyldithiocarbamate (DDTC) was found to be the most suitable collector for galena flotation in strongly alkaline media. The very potential produced hydrophobic PbD 2-the surface reaction product of DDTC with galena, is 0 to 0.2 V. Meantime DDTC can depress the surface over oxidation of galena. Investigations also indicate that, in the range of -0.9 V to 0.6 V, hydrophobic PbD 2 can be firmly adsorbed on galena.
基金supported by the National Key R&D Program of China(No.2016YFA0300102)the National Natural Science Foundation of China(No.11675179,No.11434009,and No.11374010)+2 种基金the Fundamental Research Funds for the Central Universities(No.WK2340000065)partially carried out at the University of Science and Technology of China(USTC)center for Micro and Nanoscale Research and Fabricationthe support from the magnetic circular dichroism endstation at Hefei Light Source
文摘Transition-metal oxides have attracted much attention due to its abundant crystalline phases and intriguing physical properties. However, some of these compounds are difficult to be fabricated directly in film form due to the ease of valence variation of transition-metal elements.In this work, we reveal the reversible structural transition between SrVO3 and Sr2V2O7 films via thermal treatment in oxygen atmosphere or in vacuum. Based on this, Sr2V2O7 epitaxial films are successfully synthesized and studied. Property characterizations show that the semitransparent and metallic SrVO3 could reversibly switch into transparent and insulating Sr2V2O7, implying potential applications in controllable electronic and optical devices.
基金supported by the National High Technology Research and Development of China (863 Program,2009AA03Z217)the National Natural Science Foundation of China (90922028,51002053)+1 种基金the Natural Science Foundation of Fujian Province (2010J05115)the Fundamental Research Funds for the Central Universities (JB-SJ1001)
文摘A simple method for the controllable hydrothermal synthesis of nanocrystalline anatase TiO2(nc-TiO2) particles involving the selection of suitable organic alkali peptizing agents is reported.A dye-sensitized solar cell(DSSC) with square-like nc-TiO2 particles with side lengths about 8-13 nm-prepared using tetraethylammonium hydroxide(TEAOH)-in the photoelectrode showed higher photovoltaic performance than two other DSSCs with square-like nc-TiO2 particles with side lengths about 7-10 nm-prepared using tetrabutylammonium hydroxide-or elongated nc-TiO2 particles with lengths about 18-35 nm and width about 10 18 nm-prepared using tetramethylammonium hydroxide(TMAOH)-in the photoelectrodes.When a scattering layer prepared from sub-micron size spheres or cone-like nc-TiO2 particles-synthesized using a higher concentration of TMAOH-was added on top of the photoelectrode fabricated from nc-TiO2 synthesized with TEAOH,the energy conversion efficiency of the DSSC was markedly increased from 6.77% to 8.18%.
基金supported by the National Natural Science Foundation of China(51577175)NSAF(U1630106)
文摘Through meticulous design, a Li-lacking Cr2O5 cathode is physically mixed with Li-rich Li(1.2)Ni(0.13)Co(0.13)Mn(0.54)O2(LNCM) cathode to form composite cathodes LNCM@x Cr2O5(x = 0, 0.1, 0.2, 0.3, 0.35, 0.4, mass ratio) in order to make use of the excess lithium produced by the Li-rich component in the first charge-discharge process. The initial coulombic efficiency(ICE) of LNCM half-cell has been significantly increased from75.5%(x = 0) to 108.9%(x = 0.35). A novel full-cell comprising LNCM@Cr2O5composite cathode and Li4Ti5O(12) anode has been developed. Such electrode accordance, i.e., LNCM@Cr2O5//Li4Ti5O(12)("L-cell"), shows a particularly high ICE of97.7%. The "L-cell" can transmit an outstanding reversible capacity up to 250 mA h g-1and has 94% capacity retention during 50 cycles. It also has superior rate capacities as high as122 and 94 mA h g-(-1)at 1.25 and 2.5 A g-(-1)current densities,which are even better in comparison of Li-rich//graphite fullcell("G-cell"). The high performance of "L-cell" benefiting from the well-designed coulombic efficiency accordance mechanism displays a great potential for fast charge-discharge applications in future high-energy lithium ion batteries.