The fast excitation system of a composite magnetic controllable reactor is introduced. In this excitation system, a bidirectional function (i.e. fast forward excitation and backward forcible demagnetization) is avai...The fast excitation system of a composite magnetic controllable reactor is introduced. In this excitation system, a bidirectional function (i.e. fast forward excitation and backward forcible demagnetization) is available, which can significantly improve the response speed, performances, and application scope of magnetic controllable reactor.展开更多
In this work, we selected a magnetic-semiconductor as an interlayer and investigated the electronic transport properties in the ferromagnetic/ferromagnetic-semiconductor/ferromagnetic (FM/FS/FM) trilayers. The results...In this work, we selected a magnetic-semiconductor as an interlayer and investigated the electronic transport properties in the ferromagnetic/ferromagnetic-semiconductor/ferromagnetic (FM/FS/FM) trilayers. The results indicate that the large TMR comparable to that in ferromagnetic/metal oxide/ferromagnetic sandwich can be obtained in the FM/FS/FM multilayers with considering the spin filter effect in the magnetic semiconductor layer. Moreover, the transmission coefficient and TMR can be tuned through thickness, Rashba spin-orbit coupling strength and molecular field of the magnetic semiconductor. Our calculations could provide a way to design the semiconductor spintronic devices with excellent and controllable properties.展开更多
文摘The fast excitation system of a composite magnetic controllable reactor is introduced. In this excitation system, a bidirectional function (i.e. fast forward excitation and backward forcible demagnetization) is available, which can significantly improve the response speed, performances, and application scope of magnetic controllable reactor.
基金Sichuan Province Academic and Technical Leader Training Foundation (Grant No. 25727501)the Subject Construction Foundations of Southwest University for Nationalities (Grant No.2012XWD-S0805)
文摘In this work, we selected a magnetic-semiconductor as an interlayer and investigated the electronic transport properties in the ferromagnetic/ferromagnetic-semiconductor/ferromagnetic (FM/FS/FM) trilayers. The results indicate that the large TMR comparable to that in ferromagnetic/metal oxide/ferromagnetic sandwich can be obtained in the FM/FS/FM multilayers with considering the spin filter effect in the magnetic semiconductor layer. Moreover, the transmission coefficient and TMR can be tuned through thickness, Rashba spin-orbit coupling strength and molecular field of the magnetic semiconductor. Our calculations could provide a way to design the semiconductor spintronic devices with excellent and controllable properties.