Objective To introduce a novel Cobb protractor and assess its reliability and rapidity for measuring Cobb angle in scoliosis patients. Methods The novel Cobb protractor had two endplate markers. A measurement was perf...Objective To introduce a novel Cobb protractor and assess its reliability and rapidity for measuring Cobb angle in scoliosis patients. Methods The novel Cobb protractor had two endplate markers. A measurement was performed just to align the two markers to each endplate of the curve. The Cobb angle on the posteroanterior radiographs of 24 patients clinically diagnosed with adolescent idiopathic scoliosis was measured by three orthopedic surgeons with both standard Cobb method and the new technique, and the time of measurement was recorded. Intraclass correlation coefficients(ICCs) were calculated to assess the reliability of the new method. Results The time for a measurement with the new tool was approximately 10 seconds less than the time that used to finish a measurement with the standard method(P<0.05). The overall mean Cobb angle for the major curve of the 24 patients was 47.8°. The mean overall intraobserver and interobserver ICC was 0.971 and 0.971 for the Cobb method group, while the overall intraobserver ICC and the interobserver was 0.985 and 0.979 for the new tool group. Conclusions The novel Cobb protractor could perform quick measurement and measure almost all forms of radiographs. The Cobb protractor might be an ideal instrument to measure the Cobb angle.展开更多
With the development of general-purpose processors (GPP) and video signal processing algorithms, it is possible to implement a software-based real-time video encoder on GPP, and its low cost and easy upgrade attract d...With the development of general-purpose processors (GPP) and video signal processing algorithms, it is possible to implement a software-based real-time video encoder on GPP, and its low cost and easy upgrade attract developers' interests to transfer video encoding from specialized hardware to more flexible software. In this paper, the encoding structure is set up first to support complexity scalability; then a lot of high performance algorithms are used on the key time-consuming modules in coding process; finally, at programming level, processor characteristics are considered to improve data access efficiency and processing parallelism. Other programming methods such as lookup table are adopted to reduce the computational complexity. Simulation results showed that these ideas could not only improve the global performance of video coding, but also provide great flexibility in complexity regulation.展开更多
Gortler vortices are key issues in the design of gas turbine blades. The present study deals with flow visualization over concave surface for gas turbine applications. The aim is to comprehend qualitatively the flow t...Gortler vortices are key issues in the design of gas turbine blades. The present study deals with flow visualization over concave surface for gas turbine applications. The aim is to comprehend qualitatively the flow trends, particularly the Gortler vortices formation and development. Gortler vortices have the shape of mushroom-like vortices regularly spaced at 25 mm. These vortices grow and increase in strength more rapidly along the surface in the case of the same grid of turbulence applied to the measuring section. The curvature radius of the studied blade is 0.5 m and the stream turbulence intensity level is 2.6%. The velocity field is measured by hot wire anemometer in the streamwise direction. The velocity profile is found to be highly distorted by the momentum transfer associated with Gortler vortices. The results are compared to Blasius flow and to literature data for a blade with curvature radius equal to 2 m.展开更多
A novel fiber Bragg grating(FBG)displacement sensor is proposed,which can achieve wide measuring range displacement detection with variable measurement precision due to its mechanical transfer structure of helical bev...A novel fiber Bragg grating(FBG)displacement sensor is proposed,which can achieve wide measuring range displacement detection with variable measurement precision due to its mechanical transfer structure of helical bevel gear.A prototype is designed and fabricated.The maximum detection displacement of this prototype is 1.751 m,and the precision grade changes from 0.2%to 6.7%.Through analyzing the experiment data which is obtained in the calibration experiment,the measuring range of this sensor is from 0 m to 1.532 m,and the wavelength shift errors between experiment data and theory calculation are all less than 5%.展开更多
An experimental investigation was performed to study the heat transfer in an eight-nozzle spray cooling system with de-ionized water as the working fluid. Visualization of the liquid-solid contact area and the flow ne...An experimental investigation was performed to study the heat transfer in an eight-nozzle spray cooling system with de-ionized water as the working fluid. Visualization of the liquid-solid contact area and the flow near the heated surface was made using a microscopic lens system in conjunction with an advanced high-speed camera. The film thickness and film wavelike characteristics under liquid volume flow rates ranged from 2.78×10 -6 m 3 /s to 1.39×10 -5 m 3 /s and surface temperatures between 22℃ and 78.2℃ were examined respectively. The development process of the liquid film on the heated surface was observed. The local mean film thickness, the film wavelike characteristics and the behavior of the bubbles appeared in the liquid film were captured using an image processing technique. It is discovered that there exists a climax of local mean film thickness during the starting process of spray cooling. When the liquid film reaches the dynamic stable state, the dimensionless mean film thickness decreases with the increase of the liquid volume flow rate, and increases with the increase of surface temperature generally. Besides, the volume flow rate has a more significant impact on the wavelength and amplitude of the liquid film compared to the surface temperature.展开更多
In order to clarify the structure of the cold flow discharged from the counter-flow vortex tube(VT), the temperature and pressure of the cold flow were measured, and the existence and behavior of the reversed flow at ...In order to clarify the structure of the cold flow discharged from the counter-flow vortex tube(VT), the temperature and pressure of the cold flow were measured, and the existence and behavior of the reversed flow at the cold exit was studied using a simple flow visualization technique consisting of a 0.75mm-diameter needle, and an oil paint droplet. It is observed through this experiment that the Pitot pressure at the cold exit center can either be lower or higher than atmospheric pressure, depending on the inlet pressure and the cold fraction, and that a reversed flow is observed when the Pitot pressure at the cold exit center is lower than atmospheric pressure. In addition, it is observed that when reducing the cold fraction from unity at any arbitrary inlet pressure, the region of reversed and colder flow in the central part of cold exit extends in the downstream direction.展开更多
文摘Objective To introduce a novel Cobb protractor and assess its reliability and rapidity for measuring Cobb angle in scoliosis patients. Methods The novel Cobb protractor had two endplate markers. A measurement was performed just to align the two markers to each endplate of the curve. The Cobb angle on the posteroanterior radiographs of 24 patients clinically diagnosed with adolescent idiopathic scoliosis was measured by three orthopedic surgeons with both standard Cobb method and the new technique, and the time of measurement was recorded. Intraclass correlation coefficients(ICCs) were calculated to assess the reliability of the new method. Results The time for a measurement with the new tool was approximately 10 seconds less than the time that used to finish a measurement with the standard method(P<0.05). The overall mean Cobb angle for the major curve of the 24 patients was 47.8°. The mean overall intraobserver and interobserver ICC was 0.971 and 0.971 for the Cobb method group, while the overall intraobserver ICC and the interobserver was 0.985 and 0.979 for the new tool group. Conclusions The novel Cobb protractor could perform quick measurement and measure almost all forms of radiographs. The Cobb protractor might be an ideal instrument to measure the Cobb angle.
文摘With the development of general-purpose processors (GPP) and video signal processing algorithms, it is possible to implement a software-based real-time video encoder on GPP, and its low cost and easy upgrade attract developers' interests to transfer video encoding from specialized hardware to more flexible software. In this paper, the encoding structure is set up first to support complexity scalability; then a lot of high performance algorithms are used on the key time-consuming modules in coding process; finally, at programming level, processor characteristics are considered to improve data access efficiency and processing parallelism. Other programming methods such as lookup table are adopted to reduce the computational complexity. Simulation results showed that these ideas could not only improve the global performance of video coding, but also provide great flexibility in complexity regulation.
文摘Gortler vortices are key issues in the design of gas turbine blades. The present study deals with flow visualization over concave surface for gas turbine applications. The aim is to comprehend qualitatively the flow trends, particularly the Gortler vortices formation and development. Gortler vortices have the shape of mushroom-like vortices regularly spaced at 25 mm. These vortices grow and increase in strength more rapidly along the surface in the case of the same grid of turbulence applied to the measuring section. The curvature radius of the studied blade is 0.5 m and the stream turbulence intensity level is 2.6%. The velocity field is measured by hot wire anemometer in the streamwise direction. The velocity profile is found to be highly distorted by the momentum transfer associated with Gortler vortices. The results are compared to Blasius flow and to literature data for a blade with curvature radius equal to 2 m.
基金supported by the National Natural Science Foundation of China(Nos.61174018,41472260 and 41202206)
文摘A novel fiber Bragg grating(FBG)displacement sensor is proposed,which can achieve wide measuring range displacement detection with variable measurement precision due to its mechanical transfer structure of helical bevel gear.A prototype is designed and fabricated.The maximum detection displacement of this prototype is 1.751 m,and the precision grade changes from 0.2%to 6.7%.Through analyzing the experiment data which is obtained in the calibration experiment,the measuring range of this sensor is from 0 m to 1.532 m,and the wavelength shift errors between experiment data and theory calculation are all less than 5%.
基金supported by the National Natural Science Foundation of China under Grant No.50906083National Basic Research Program of China under Grant No.2011CB710705
文摘An experimental investigation was performed to study the heat transfer in an eight-nozzle spray cooling system with de-ionized water as the working fluid. Visualization of the liquid-solid contact area and the flow near the heated surface was made using a microscopic lens system in conjunction with an advanced high-speed camera. The film thickness and film wavelike characteristics under liquid volume flow rates ranged from 2.78×10 -6 m 3 /s to 1.39×10 -5 m 3 /s and surface temperatures between 22℃ and 78.2℃ were examined respectively. The development process of the liquid film on the heated surface was observed. The local mean film thickness, the film wavelike characteristics and the behavior of the bubbles appeared in the liquid film were captured using an image processing technique. It is discovered that there exists a climax of local mean film thickness during the starting process of spray cooling. When the liquid film reaches the dynamic stable state, the dimensionless mean film thickness decreases with the increase of the liquid volume flow rate, and increases with the increase of surface temperature generally. Besides, the volume flow rate has a more significant impact on the wavelength and amplitude of the liquid film compared to the surface temperature.
文摘In order to clarify the structure of the cold flow discharged from the counter-flow vortex tube(VT), the temperature and pressure of the cold flow were measured, and the existence and behavior of the reversed flow at the cold exit was studied using a simple flow visualization technique consisting of a 0.75mm-diameter needle, and an oil paint droplet. It is observed through this experiment that the Pitot pressure at the cold exit center can either be lower or higher than atmospheric pressure, depending on the inlet pressure and the cold fraction, and that a reversed flow is observed when the Pitot pressure at the cold exit center is lower than atmospheric pressure. In addition, it is observed that when reducing the cold fraction from unity at any arbitrary inlet pressure, the region of reversed and colder flow in the central part of cold exit extends in the downstream direction.