A comparative study of amorphous electroless Ni-W-P coatings on mild steel substrate treated by a high power diode laser and furnace annealing was presented.Effects of different laser operating parameters and furnace-...A comparative study of amorphous electroless Ni-W-P coatings on mild steel substrate treated by a high power diode laser and furnace annealing was presented.Effects of different laser operating parameters and furnace-annealing conditions on microstructures,in terms of crystallisation,pores formation and grain growth,were investigated using SEM/EDX and XRD. Corrosion behaviours of these coatings before and after various treatments were evaluated with anodic polarisation in 0.5 mol/L H2SO4 solution.The results show that the furnace-annealing produces either a mixture of nanocrystallined Ni and amorphous phases or precipitated Ni3P phase distributed in nanocrystallined Ni-based matrix,depending on annealing temperatures,whilst the laser treatment under the operating conditions only produces nanocrystallined Ni-based matrix with Ni3P precipitates.Corrosion performance of the coatings treated by both the laser and the furnace-annealing is dependent on the annealing temperature and laser operating conditions.Corrosion mechanisms of various treated-coatings were discussed in the consideration of phase constitutes and proportion,grain sizes of both Ni and Ni3P phases,pores formation and residual stresses.展开更多
This paper introduces a new technology of using ceramic coating on piston rings of an internal combustion engine, and the comparison of mechanical efficiency and performances of an actual engine before and after the a...This paper introduces a new technology of using ceramic coating on piston rings of an internal combustion engine, and the comparison of mechanical efficiency and performances of an actual engine before and after the application of ceramic coating on the piston rings. The experimental results show that the mechanical efficiency and power output are enhanced by 4% and 2.6%, respectively, with fuel consumption reduced by (2.9%.) Further studies on coating processing and coating materials as well as the reliability and durability will be of great significance in the application and popularization of the new technology.展开更多
Nowadays, oil spills have led to a serious environmental crisis of the world. To deal with this problem, inspired from super-hydrophobic lotus leaf, this study fabricated super-hydrophobic and super-lipophilic functio...Nowadays, oil spills have led to a serious environmental crisis of the world. To deal with this problem, inspired from super-hydrophobic lotus leaf, this study fabricated super-hydrophobic and super-lipophilic functionalized graphene oxide/polyurethane (FGP) sponge by a simple and inexpensive dip coating method. The resulting FGP sponge was characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy and water contact angle. The results expressed that FGP sponge exhibited a similar surface structure to that of a lotus leaf, and possessed the super-hydrophobic characteristic with the water contact angle (WAC) of 152°± 1 °. The absorption capacity and reusability were also investigated. It can be seen that, the FGP sponge can remove a wide range of oils and organic solvents from water with good absorption capacities (up to 35 times of its own mass). Significantly, after 10 cycles the absorption capacity of the oils and organic solvents was higher than 90°; for the reused FGP sponge, demonstrating the good reusability of the FGP sponge. Therefore, this study probably provided a simole way to remove the pollutions ofoil spills and toxic organism from water.展开更多
基金Project(Y2006F40) supported by the Natural Science Foundation of Shandong Province, ChinaProject(N00003) supported by UK Northwest Science Council through Northwest Laser Engineering Consortium (NWLEC)
文摘A comparative study of amorphous electroless Ni-W-P coatings on mild steel substrate treated by a high power diode laser and furnace annealing was presented.Effects of different laser operating parameters and furnace-annealing conditions on microstructures,in terms of crystallisation,pores formation and grain growth,were investigated using SEM/EDX and XRD. Corrosion behaviours of these coatings before and after various treatments were evaluated with anodic polarisation in 0.5 mol/L H2SO4 solution.The results show that the furnace-annealing produces either a mixture of nanocrystallined Ni and amorphous phases or precipitated Ni3P phase distributed in nanocrystallined Ni-based matrix,depending on annealing temperatures,whilst the laser treatment under the operating conditions only produces nanocrystallined Ni-based matrix with Ni3P precipitates.Corrosion performance of the coatings treated by both the laser and the furnace-annealing is dependent on the annealing temperature and laser operating conditions.Corrosion mechanisms of various treated-coatings were discussed in the consideration of phase constitutes and proportion,grain sizes of both Ni and Ni3P phases,pores formation and residual stresses.
文摘This paper introduces a new technology of using ceramic coating on piston rings of an internal combustion engine, and the comparison of mechanical efficiency and performances of an actual engine before and after the application of ceramic coating on the piston rings. The experimental results show that the mechanical efficiency and power output are enhanced by 4% and 2.6%, respectively, with fuel consumption reduced by (2.9%.) Further studies on coating processing and coating materials as well as the reliability and durability will be of great significance in the application and popularization of the new technology.
基金Supported by the National Natural Science Foundation of China(21776319)
文摘Nowadays, oil spills have led to a serious environmental crisis of the world. To deal with this problem, inspired from super-hydrophobic lotus leaf, this study fabricated super-hydrophobic and super-lipophilic functionalized graphene oxide/polyurethane (FGP) sponge by a simple and inexpensive dip coating method. The resulting FGP sponge was characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy and water contact angle. The results expressed that FGP sponge exhibited a similar surface structure to that of a lotus leaf, and possessed the super-hydrophobic characteristic with the water contact angle (WAC) of 152°± 1 °. The absorption capacity and reusability were also investigated. It can be seen that, the FGP sponge can remove a wide range of oils and organic solvents from water with good absorption capacities (up to 35 times of its own mass). Significantly, after 10 cycles the absorption capacity of the oils and organic solvents was higher than 90°; for the reused FGP sponge, demonstrating the good reusability of the FGP sponge. Therefore, this study probably provided a simole way to remove the pollutions ofoil spills and toxic organism from water.