Test results of reducing two stroke motorcycle emissions with new type carburettors and electronic fuel injection systems are presented. Analyses and comparison between different systems are discussed. The adoption o...Test results of reducing two stroke motorcycle emissions with new type carburettors and electronic fuel injection systems are presented. Analyses and comparison between different systems are discussed. The adoption of electronically controlled injection and corresponding electronic control technique is an effective measure of prolonged vitality to improve emissions from two stroke motorcycles. Suggestions about the strategic steps of China′s motorcycle emission control are proposed.展开更多
Experimental investigations on the flexibility of a 300 MW Arch Firing (AF) coal-fired boiler when burning low quality coals is reported. Measurements of gas temperature and species concentration and char sampling usi...Experimental investigations on the flexibility of a 300 MW Arch Firing (AF) coal-fired boiler when burning low quality coals is reported. Measurements of gas temperature and species concentration and char sampling using a water-cooled suction pyrometer were carried out along the furnace elevation. The carbon content and the size distribu-tions of the char samples were obtained. The char morphology was examined using a field emission scanning electron microscope (FESEM). The char sampling was performed on this type of boiler for the first time. The results indicate that the flexibility of this boiler burning low quality coals under a moderate boiler load is better than its flexibility under a high boiler load. Because of the insufficient capacity of the coal pulverizers used,in case of low coal quality the pul-verized coal fineness will drastically decrease under high boiler loads. This causes an increase in the loss due to incom-plete mechanical and chemical combustion. This is the main cause of a low burnout degree of the pulverized coal and the decrease of the flexibility of this AF boiler under a high boiler load.展开更多
This study was conducted to investigate the characteristics of meso-scale combustion.The technique of electrical capacitance tomography(ECT) was used to locate flame position and monitor the effect corresponding to va...This study was conducted to investigate the characteristics of meso-scale combustion.The technique of electrical capacitance tomography(ECT) was used to locate flame position and monitor the effect corresponding to varied air/fuel ratio in a meso-scale combustor.Combustion phenomena including igniting,quenching and unsteady combustion have been visualized using ECT.The method of metallization protecting ECT sensor from high temperature damage and the novel calibration method adapted to ECT monitoring of unknown permittivity flame have been shown to be successful.At the same time,electrical nature of combustion and dielectric characteristics of hy-drocarbon flame were studied.The relationship between flame permittivity and state parameters of combustion gas was demonstrated preliminarily.展开更多
Post-combustion amine absorption and stripping can remove 90% of the CO2 from power plant flue gas, but systems can reduce electrical output by approximately 30% due to energy requirements for stripping CO2 from solve...Post-combustion amine absorption and stripping can remove 90% of the CO2 from power plant flue gas, but systems can reduce electrical output by approximately 30% due to energy requirements for stripping CO2 from solvent and CO2 compression. The CO2 capture energy penalty can be reduced while developing renewable energy technologies by meeting CO2 capture energy requirements with a solar thermal energy system, particularly when electricity demand and prices are the highest. This study presents an initial review of solar thermal technologies for supplying CO2 capture energy, with a focus on high temperature systems. Parabolic troughs and central receivers are technically able to provide energy for CO2 capture. However, the solar system's capital costs would be roughly half that of the base coal-fired plant with CO2 capture, and high electricity prices are required to offset the costs of operating the solar thermal system. For high temperature solar thermal systems, direct electricity generation is likely a more efficient way to use solar energy to replace output lost to CO2 capture energy. However, low temperature solar thermal systems might integrate better with solvent stripping equipment, and more rigorous analysis is required to definitively assess the feasibility of using solar energy for CO2 capture.展开更多
Biogas fuel is a sustainable and renewable fuel produced from anaerobic digestion of organic matter. The biogas fuel is a flammable mixture of methane and carbon dioxide with low to medium calorific values. Biogas is ...Biogas fuel is a sustainable and renewable fuel produced from anaerobic digestion of organic matter. The biogas fuel is a flammable mixture of methane and carbon dioxide with low to medium calorific values. Biogas is an alternative to conventional fossil fuels and can be used for beating, transportation and power generation. CFD (computational fluid dynamic) analysis of the combustion performance and emissions of biogas fuel in gas turbine engines is presented in this study. The main objective of this study is to understand the impact of the variability in the biogas fuel compositions and lower heating values on the combustion process. Natural gas, biogas from anaerobic digester, landfill biogas, and natural gas/biogas mixture fuels combustion were investigated in this study. The CFD results show lower peak flame temperature and CO mole fractions inside the combustor and lower NOx emissions at the combustor exit for the biogas compared to natural gas fuel. The peak flame temperature decreases by 37% for the biogas landfill (COJCH4 = 0.89) and by 22% for the biogas anaerobic digester (CO2/CH4 = 0.54) compared to natural gas fuel combustion. The peak CO mole fraction inside the combustor decreases from 9.8 × 10-2 for natural gas fuel to 2.22 × 10-4 for biogas anaerobic digester and 1.32 × 10-7 for biogas landfill. The average NOx mole fraction at the combustor exit decreases from 1.13 × 10-5 for natural gas fuel to 0.40 × 10-6 for biogas anaerobic digester and 1.06 × 10-6 for biogas landfill. The presence of non-combustible constituents in the biogas reduces the temperature of the flame and consequently the NOx emissions.展开更多
The study of flame development characteristics is crucial in the study of flame propagation, extinction, and for the investigation of combustion cyclic variability in SI engine. The aim of this study is to investigate...The study of flame development characteristics is crucial in the study of flame propagation, extinction, and for the investigation of combustion cyclic variability in SI engine. The aim of this study is to investigate the characteristics of flame development in a lean-stratified combustion of Natural Gas Engine (CNG) in a single cylinder direct injection (DI) engine at a specific motor speed, and fixed injection timing and air-fuel ratio by varying only the swirl level at the intake. The engine was set to run at 1800 rpm with half-load throttled. The ignition advance was set at 21.5 BTDC, and to create an overall lean and stratified mixture, injection timing was set at 61 BTDC with an air-fuel-ratio of 40.5 (λ=2.35). Variable turbulent flow conditions near spark-plug were created by positioning the swirl control valves (SCV) at the intake port just before the two intake valves. This was done by setting one of the valves at full open position and the other one at 0% closed, 50% closed and 100% closed positions in order to achieve medium tumble (no swirl), medium swirl and high swirl flows in the cylinder, respectively. An endoscope and CCD camera assembly was utilized to capture the flame images from the tumble plane at the intake side of the engine ever), 2 CA degrees after ignition timing (AIT) for 40 CAs. It was observed that flame growth rate and flame convection velocity are increasing with increasing the swirl level. The total combustion duration is, thus, shorter in swirl induced combustion than without. However, COV in IMEP is greater in swirl induced flow cases than the medium tumble.展开更多
In the last few years intensive experimental investigations were performed at the University of Karlsruhe to develop an analytical model for the Helmholtz resonator-type combustion system. In the present work the reso...In the last few years intensive experimental investigations were performed at the University of Karlsruhe to develop an analytical model for the Helmholtz resonator-type combustion system. In the present work the resonance characteristics of a Helmholtz resonator-type combustion chamber were investigated using large-eddy simulations (LES), to understand better the flow effects in the chamber and to localize the dissipation. In this paper the results of the LES are presented, which show good agreement with the experiments. The comparison of the LES study with the experiments sheds light on the significant role of the wall roughness in the exhaust gas pipe.展开更多
The total efficiency of power plants depends on the energy conversion in a combustor and a turbine .Considerably higher energy transfer rates can be obtained from a pulsed combustion.but unsteady flow of a single jet ...The total efficiency of power plants depends on the energy conversion in a combustor and a turbine .Considerably higher energy transfer rates can be obtained from a pulsed combustion.but unsteady flow of a single jet combustor reduces the turbine efficiency.Therefore.two pulse combustors were set in parallel and connected to a settling chamber that supplies a flow with constant pressure to the turbine.The aim of investigations presented here is a demonstration of technical feasibility for industrial applications and to show the benefits obtained from the pulse combustors.展开更多
An exergy analysis was performed considering the combustion of methane and agro-industrial residues produced in Portugal (forest residues and vines pruning). Regarding that the irreversibilities of a thermodynamic pro...An exergy analysis was performed considering the combustion of methane and agro-industrial residues produced in Portugal (forest residues and vines pruning). Regarding that the irreversibilities of a thermodynamic process are path dependent, the combustion process was considering as resulting from different hypothetical paths each one characterized by four main sub-processes: reactant mixing, fuel oxidation, internal thermal energy exchange (heat transfer), and product mixing. The exergetic efficiency was computed using a zero dimensional model developed by using a Visual Basic home code. It was concluded that the exergy losses were mainly due to the internal thermal energy exchange sub-process. The exergy losses from this sub-process are higher when the reactants are preheated up to the ignition temperature without previous fuel oxidation. On the other hand, the global exergy destruction can be minored increasing the pressure, the reactants temperature and the oxygen content on the oxidant stream. This methodology allows the identification of the phenomena and processes that have larger exergy losses, the understanding of why these losses occur and how the exergy changes with the parameters associated to each system which is crucial to implement the syngas combustion from biomass products as a competitive technology.展开更多
文摘Test results of reducing two stroke motorcycle emissions with new type carburettors and electronic fuel injection systems are presented. Analyses and comparison between different systems are discussed. The adoption of electronically controlled injection and corresponding electronic control technique is an effective measure of prolonged vitality to improve emissions from two stroke motorcycles. Suggestions about the strategic steps of China′s motorcycle emission control are proposed.
基金Projects 2006AA05Z301 supported by the Hi-tech Research and Development Program of China50636010 by the National Natural Science Foundation of China
文摘Experimental investigations on the flexibility of a 300 MW Arch Firing (AF) coal-fired boiler when burning low quality coals is reported. Measurements of gas temperature and species concentration and char sampling using a water-cooled suction pyrometer were carried out along the furnace elevation. The carbon content and the size distribu-tions of the char samples were obtained. The char morphology was examined using a field emission scanning electron microscope (FESEM). The char sampling was performed on this type of boiler for the first time. The results indicate that the flexibility of this boiler burning low quality coals under a moderate boiler load is better than its flexibility under a high boiler load. Because of the insufficient capacity of the coal pulverizers used,in case of low coal quality the pul-verized coal fineness will drastically decrease under high boiler loads. This causes an increase in the loss due to incom-plete mechanical and chemical combustion. This is the main cause of a low burnout degree of the pulverized coal and the decrease of the flexibility of this AF boiler under a high boiler load.
基金Supported by the National Natural Science Foundation of China (50806005,50736002,61072005)
文摘This study was conducted to investigate the characteristics of meso-scale combustion.The technique of electrical capacitance tomography(ECT) was used to locate flame position and monitor the effect corresponding to varied air/fuel ratio in a meso-scale combustor.Combustion phenomena including igniting,quenching and unsteady combustion have been visualized using ECT.The method of metallization protecting ECT sensor from high temperature damage and the novel calibration method adapted to ECT monitoring of unknown permittivity flame have been shown to be successful.At the same time,electrical nature of combustion and dielectric characteristics of hy-drocarbon flame were studied.The relationship between flame permittivity and state parameters of combustion gas was demonstrated preliminarily.
文摘Post-combustion amine absorption and stripping can remove 90% of the CO2 from power plant flue gas, but systems can reduce electrical output by approximately 30% due to energy requirements for stripping CO2 from solvent and CO2 compression. The CO2 capture energy penalty can be reduced while developing renewable energy technologies by meeting CO2 capture energy requirements with a solar thermal energy system, particularly when electricity demand and prices are the highest. This study presents an initial review of solar thermal technologies for supplying CO2 capture energy, with a focus on high temperature systems. Parabolic troughs and central receivers are technically able to provide energy for CO2 capture. However, the solar system's capital costs would be roughly half that of the base coal-fired plant with CO2 capture, and high electricity prices are required to offset the costs of operating the solar thermal system. For high temperature solar thermal systems, direct electricity generation is likely a more efficient way to use solar energy to replace output lost to CO2 capture energy. However, low temperature solar thermal systems might integrate better with solvent stripping equipment, and more rigorous analysis is required to definitively assess the feasibility of using solar energy for CO2 capture.
文摘Biogas fuel is a sustainable and renewable fuel produced from anaerobic digestion of organic matter. The biogas fuel is a flammable mixture of methane and carbon dioxide with low to medium calorific values. Biogas is an alternative to conventional fossil fuels and can be used for beating, transportation and power generation. CFD (computational fluid dynamic) analysis of the combustion performance and emissions of biogas fuel in gas turbine engines is presented in this study. The main objective of this study is to understand the impact of the variability in the biogas fuel compositions and lower heating values on the combustion process. Natural gas, biogas from anaerobic digester, landfill biogas, and natural gas/biogas mixture fuels combustion were investigated in this study. The CFD results show lower peak flame temperature and CO mole fractions inside the combustor and lower NOx emissions at the combustor exit for the biogas compared to natural gas fuel. The peak flame temperature decreases by 37% for the biogas landfill (COJCH4 = 0.89) and by 22% for the biogas anaerobic digester (CO2/CH4 = 0.54) compared to natural gas fuel combustion. The peak CO mole fraction inside the combustor decreases from 9.8 × 10-2 for natural gas fuel to 2.22 × 10-4 for biogas anaerobic digester and 1.32 × 10-7 for biogas landfill. The average NOx mole fraction at the combustor exit decreases from 1.13 × 10-5 for natural gas fuel to 0.40 × 10-6 for biogas anaerobic digester and 1.06 × 10-6 for biogas landfill. The presence of non-combustible constituents in the biogas reduces the temperature of the flame and consequently the NOx emissions.
文摘The study of flame development characteristics is crucial in the study of flame propagation, extinction, and for the investigation of combustion cyclic variability in SI engine. The aim of this study is to investigate the characteristics of flame development in a lean-stratified combustion of Natural Gas Engine (CNG) in a single cylinder direct injection (DI) engine at a specific motor speed, and fixed injection timing and air-fuel ratio by varying only the swirl level at the intake. The engine was set to run at 1800 rpm with half-load throttled. The ignition advance was set at 21.5 BTDC, and to create an overall lean and stratified mixture, injection timing was set at 61 BTDC with an air-fuel-ratio of 40.5 (λ=2.35). Variable turbulent flow conditions near spark-plug were created by positioning the swirl control valves (SCV) at the intake port just before the two intake valves. This was done by setting one of the valves at full open position and the other one at 0% closed, 50% closed and 100% closed positions in order to achieve medium tumble (no swirl), medium swirl and high swirl flows in the cylinder, respectively. An endoscope and CCD camera assembly was utilized to capture the flame images from the tumble plane at the intake side of the engine ever), 2 CA degrees after ignition timing (AIT) for 40 CAs. It was observed that flame growth rate and flame convection velocity are increasing with increasing the swirl level. The total combustion duration is, thus, shorter in swirl induced combustion than without. However, COV in IMEP is greater in swirl induced flow cases than the medium tumble.
文摘In the last few years intensive experimental investigations were performed at the University of Karlsruhe to develop an analytical model for the Helmholtz resonator-type combustion system. In the present work the resonance characteristics of a Helmholtz resonator-type combustion chamber were investigated using large-eddy simulations (LES), to understand better the flow effects in the chamber and to localize the dissipation. In this paper the results of the LES are presented, which show good agreement with the experiments. The comparison of the LES study with the experiments sheds light on the significant role of the wall roughness in the exhaust gas pipe.
文摘The total efficiency of power plants depends on the energy conversion in a combustor and a turbine .Considerably higher energy transfer rates can be obtained from a pulsed combustion.but unsteady flow of a single jet combustor reduces the turbine efficiency.Therefore.two pulse combustors were set in parallel and connected to a settling chamber that supplies a flow with constant pressure to the turbine.The aim of investigations presented here is a demonstration of technical feasibility for industrial applications and to show the benefits obtained from the pulse combustors.
基金the Portuguese Foundation for Science and Technology (FCT) for the given support to the grant SFRH/BPD/71686the project PTDC/AAC-AMB/103119/2008
文摘An exergy analysis was performed considering the combustion of methane and agro-industrial residues produced in Portugal (forest residues and vines pruning). Regarding that the irreversibilities of a thermodynamic process are path dependent, the combustion process was considering as resulting from different hypothetical paths each one characterized by four main sub-processes: reactant mixing, fuel oxidation, internal thermal energy exchange (heat transfer), and product mixing. The exergetic efficiency was computed using a zero dimensional model developed by using a Visual Basic home code. It was concluded that the exergy losses were mainly due to the internal thermal energy exchange sub-process. The exergy losses from this sub-process are higher when the reactants are preheated up to the ignition temperature without previous fuel oxidation. On the other hand, the global exergy destruction can be minored increasing the pressure, the reactants temperature and the oxygen content on the oxidant stream. This methodology allows the identification of the phenomena and processes that have larger exergy losses, the understanding of why these losses occur and how the exergy changes with the parameters associated to each system which is crucial to implement the syngas combustion from biomass products as a competitive technology.