Biogas fuel is a sustainable and renewable fuel produced from anaerobic digestion of organic matter. The biogas fuel is a flammable mixture of methane and carbon dioxide with low to medium calorific values. Biogas is ...Biogas fuel is a sustainable and renewable fuel produced from anaerobic digestion of organic matter. The biogas fuel is a flammable mixture of methane and carbon dioxide with low to medium calorific values. Biogas is an alternative to conventional fossil fuels and can be used for beating, transportation and power generation. CFD (computational fluid dynamic) analysis of the combustion performance and emissions of biogas fuel in gas turbine engines is presented in this study. The main objective of this study is to understand the impact of the variability in the biogas fuel compositions and lower heating values on the combustion process. Natural gas, biogas from anaerobic digester, landfill biogas, and natural gas/biogas mixture fuels combustion were investigated in this study. The CFD results show lower peak flame temperature and CO mole fractions inside the combustor and lower NOx emissions at the combustor exit for the biogas compared to natural gas fuel. The peak flame temperature decreases by 37% for the biogas landfill (COJCH4 = 0.89) and by 22% for the biogas anaerobic digester (CO2/CH4 = 0.54) compared to natural gas fuel combustion. The peak CO mole fraction inside the combustor decreases from 9.8 × 10-2 for natural gas fuel to 2.22 × 10-4 for biogas anaerobic digester and 1.32 × 10-7 for biogas landfill. The average NOx mole fraction at the combustor exit decreases from 1.13 × 10-5 for natural gas fuel to 0.40 × 10-6 for biogas anaerobic digester and 1.06 × 10-6 for biogas landfill. The presence of non-combustible constituents in the biogas reduces the temperature of the flame and consequently the NOx emissions.展开更多
Controllable growth of high-quality hybrid nanostructures is highly desirable for the fabrication of hierarchical, complex and multifunctional devices. Here, PdAg alloys have been controllably grown at different locat...Controllable growth of high-quality hybrid nanostructures is highly desirable for the fabrication of hierarchical, complex and multifunctional devices. Here, PdAg alloys have been controllably grown at different locations on gold nanorods, producing dumbbell-like nanostructures with PdAg at the ends of the gold nanorods or branched nanostructures with PdAg grown almost perpendicular to the gold nanorods. The nucleation sites of PdAg alloys on the gold nanorods can be effectively tuned by varying the concentrations of H2PdC14, AgNO3 and cetyltrimethylammonium bromide (CTAB). The dumbbell-like and branched nanostructures were characterized by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), line-scanning energy-dispersive X-ray spectros-copy (EDS), X-ray photoelectron spectroscopy (XPS) and UV-Vis absorption spectroscopy. Their electrocatalytic performance was evaluated using ethanol oxidation as a probe reaction. The dumbbelMike nanostructures show a better anti-poisoning performance, but a worse electrochemical activity than the branched ones. The results provide guidelines for the controlled growth of complicated nanostructures for either fundamental studies or potential applications.展开更多
Heterogeneous molecular catalysts,such as metal phthalocyanines,are efficient electrocatalysts for CO_(2) reduction reaction(CO_(2)RR).However,the rational design and synthesis of a molecular catalyst-based heterostru...Heterogeneous molecular catalysts,such as metal phthalocyanines,are efficient electrocatalysts for CO_(2) reduction reaction(CO_(2)RR).However,the rational design and synthesis of a molecular catalyst-based heterostructure for CO_(2)RR remains challenging.Herein,we developed a crystalline bimetallic phthalocyanine heterostructure electrocatalyst(CoPc/FePc HS),which achieved an excellent CO_(2)-to-CO conversion efficiency(99%)and outstanding long-term stability after 10 h of electrocatalysis.Density functional theory calculations revealed that the enhancement of CO_(2)RR performance could be attributed to the distinct electron transfer pattern between FePc and CoPc.The heterostructural engineering in molecular catalysts would inspire a unique approach for improving CO_(2)RR performance.展开更多
Previous experimental and theoretical studies have demonstrated that a weak signal can be amplified and optimized by the assistance of noise. The response of the system undergoes stochastic resonance(SR) like behavior...Previous experimental and theoretical studies have demonstrated that a weak signal can be amplified and optimized by the assistance of noise. The response of the system undergoes stochastic resonance(SR) like behavior. The underlying mechanisms are fairly simple and robust. This phenomenon has been observed in a large variety of systems, including physical and biological systems. In the nervous system, the majority of synaptic input is too weak to make neurons fire a spike. This weak(or subthreshold) signals detection is very important for animal survival, and pulse detection is a simple but basic task of neuronal information transmission and processing. Some studies have found that subthreshold signals can be transmitted by the application of external noise. However, neurons are subjected to various kinds of inherent noise. Recently, theoretical work has revealed that this inherent noise improves signals detection ability. The detection ability of a single neuron is limited, and the neuronal circuit can perform this task very well by detecting the synchronization of presynaptic potentials. Here, we review recent studies of subthreshold detection by both single neurons and neuronal circuits.展开更多
文摘Biogas fuel is a sustainable and renewable fuel produced from anaerobic digestion of organic matter. The biogas fuel is a flammable mixture of methane and carbon dioxide with low to medium calorific values. Biogas is an alternative to conventional fossil fuels and can be used for beating, transportation and power generation. CFD (computational fluid dynamic) analysis of the combustion performance and emissions of biogas fuel in gas turbine engines is presented in this study. The main objective of this study is to understand the impact of the variability in the biogas fuel compositions and lower heating values on the combustion process. Natural gas, biogas from anaerobic digester, landfill biogas, and natural gas/biogas mixture fuels combustion were investigated in this study. The CFD results show lower peak flame temperature and CO mole fractions inside the combustor and lower NOx emissions at the combustor exit for the biogas compared to natural gas fuel. The peak flame temperature decreases by 37% for the biogas landfill (COJCH4 = 0.89) and by 22% for the biogas anaerobic digester (CO2/CH4 = 0.54) compared to natural gas fuel combustion. The peak CO mole fraction inside the combustor decreases from 9.8 × 10-2 for natural gas fuel to 2.22 × 10-4 for biogas anaerobic digester and 1.32 × 10-7 for biogas landfill. The average NOx mole fraction at the combustor exit decreases from 1.13 × 10-5 for natural gas fuel to 0.40 × 10-6 for biogas anaerobic digester and 1.06 × 10-6 for biogas landfill. The presence of non-combustible constituents in the biogas reduces the temperature of the flame and consequently the NOx emissions.
基金This work was supported by the Natural Science Foundation of China (Nos. 20801019, 21071055, 21172076), New Century Excellent Talents in University (No. NCET-10-0369), Shandong Provincial Natural Science Foundation for Distinguished Young Scholar (No. JQ201205), Independent Innovation Foundations of Shandong University (No. 2012 ZD007), new-faculty start-up funding in Shandong University and Key Laboratory of Fuel Cell Technology of Guangdong Province.
文摘Controllable growth of high-quality hybrid nanostructures is highly desirable for the fabrication of hierarchical, complex and multifunctional devices. Here, PdAg alloys have been controllably grown at different locations on gold nanorods, producing dumbbell-like nanostructures with PdAg at the ends of the gold nanorods or branched nanostructures with PdAg grown almost perpendicular to the gold nanorods. The nucleation sites of PdAg alloys on the gold nanorods can be effectively tuned by varying the concentrations of H2PdC14, AgNO3 and cetyltrimethylammonium bromide (CTAB). The dumbbell-like and branched nanostructures were characterized by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), line-scanning energy-dispersive X-ray spectros-copy (EDS), X-ray photoelectron spectroscopy (XPS) and UV-Vis absorption spectroscopy. Their electrocatalytic performance was evaluated using ethanol oxidation as a probe reaction. The dumbbelMike nanostructures show a better anti-poisoning performance, but a worse electrochemical activity than the branched ones. The results provide guidelines for the controlled growth of complicated nanostructures for either fundamental studies or potential applications.
基金supported by the National Natural Science Foundation of China(22071172,91833306,21875158,51633006,and 51733004).
文摘Heterogeneous molecular catalysts,such as metal phthalocyanines,are efficient electrocatalysts for CO_(2) reduction reaction(CO_(2)RR).However,the rational design and synthesis of a molecular catalyst-based heterostructure for CO_(2)RR remains challenging.Herein,we developed a crystalline bimetallic phthalocyanine heterostructure electrocatalyst(CoPc/FePc HS),which achieved an excellent CO_(2)-to-CO conversion efficiency(99%)and outstanding long-term stability after 10 h of electrocatalysis.Density functional theory calculations revealed that the enhancement of CO_(2)RR performance could be attributed to the distinct electron transfer pattern between FePc and CoPc.The heterostructural engineering in molecular catalysts would inspire a unique approach for improving CO_(2)RR performance.
基金supported by the National Natural Science Foundation of China(Grant No.11275084)the Natural Science Foundation of Gansu ProvinceChina(Grant No.1506RJZA040)
文摘Previous experimental and theoretical studies have demonstrated that a weak signal can be amplified and optimized by the assistance of noise. The response of the system undergoes stochastic resonance(SR) like behavior. The underlying mechanisms are fairly simple and robust. This phenomenon has been observed in a large variety of systems, including physical and biological systems. In the nervous system, the majority of synaptic input is too weak to make neurons fire a spike. This weak(or subthreshold) signals detection is very important for animal survival, and pulse detection is a simple but basic task of neuronal information transmission and processing. Some studies have found that subthreshold signals can be transmitted by the application of external noise. However, neurons are subjected to various kinds of inherent noise. Recently, theoretical work has revealed that this inherent noise improves signals detection ability. The detection ability of a single neuron is limited, and the neuronal circuit can perform this task very well by detecting the synchronization of presynaptic potentials. Here, we review recent studies of subthreshold detection by both single neurons and neuronal circuits.