With long-term marine surveys and research,and especially with the development of new marine environment monitoring technologies,prodigious amounts of complex marine environmental data are generated,and continuously i...With long-term marine surveys and research,and especially with the development of new marine environment monitoring technologies,prodigious amounts of complex marine environmental data are generated,and continuously increase rapidly.Features of these data include massive volume,widespread distribution,multiple-sources,heterogeneous,multi-dimensional and dynamic in structure and time.The present study recommends an integrative visualization solution for these data,to enhance the visual display of data and data archives,and to develop a joint use of these data distributed among different organizations or communities.This study also analyses the web services technologies and defines the concept of the marine information gird,then focuses on the spatiotemporal visualization method and proposes a process-oriented spatiotemporal visualization method.We discuss how marine environmental data can be organized based on the spatiotemporal visualization method,and how organized data are represented for use with web services and stored in a reusable fashion.In addition,we provide an original visualization architecture that is integrative and based on the explored technologies.In the end,we propose a prototype system of marine environmental data of the South China Sea for visualizations of Argo floats,sea surface temperature fields,sea current fields,salinity,in-situ investigation data,and ocean stations.An integration visualization architecture is illustrated on the prototype system,which highlights the process-oriented temporal visualization method and demonstrates the benefit of the architecture and the methods described in this study.展开更多
Daily exposure under solar ultraviolet(UV)and infrared(IR)is prone to cause skin cancer and photoaging.Real-time monitoring of the environmental UV index and IR radiation temperature during outdoor activities can enha...Daily exposure under solar ultraviolet(UV)and infrared(IR)is prone to cause skin cancer and photoaging.Real-time monitoring of the environmental UV index and IR radiation temperature during outdoor activities can enhance awareness and strengthen personal protection.It is a challenge to design flexible,wearable devices(with measurement capabilities)that can be integrated with apparels.Here,microfluidic spinning technology(MST)was used for the continuous and large-scale fabrication of eco-friendly coresheath Janus fibers with a well-defined axially symmetric Janus core.One side of the core was sensitive to UV light and the opposite was sensitive to IR radiation.Textiles woven with Janus fibers showed excellent independent reversible color responses to dual-wavelength stimulation.Such textiles switched among four colors under UV and IR irradiation,both individually and in combination.The color gradient of the textiles changed significantly with increasing UV intensity(UV index).After 60 cycles of UV/IR stimulation and 50 washes,the change rate of the comprehensive chromatic aberration(ΔE_(ab)^(*))of the textiles under different conditions was only 0.42%-4.71%.This was attributed to the unique structure of the fibers.The three-line striped textiles demonstrated the potential of the fibers to be used as wearable energy-free realtime visual monitors of the UV index and IR radiation temperature.展开更多
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX1-YW-12-04)the National High Technology Research and Development Program of China (863 Program) (Nos.2009AA12Z148,2007AA092202)Support for this study was provided by the Institute of Geographical Sciences and the Natural Resources Research,Chinese Academy of Science (IGSNRR,CAS) and the Institute of Oceanology, CAS
文摘With long-term marine surveys and research,and especially with the development of new marine environment monitoring technologies,prodigious amounts of complex marine environmental data are generated,and continuously increase rapidly.Features of these data include massive volume,widespread distribution,multiple-sources,heterogeneous,multi-dimensional and dynamic in structure and time.The present study recommends an integrative visualization solution for these data,to enhance the visual display of data and data archives,and to develop a joint use of these data distributed among different organizations or communities.This study also analyses the web services technologies and defines the concept of the marine information gird,then focuses on the spatiotemporal visualization method and proposes a process-oriented spatiotemporal visualization method.We discuss how marine environmental data can be organized based on the spatiotemporal visualization method,and how organized data are represented for use with web services and stored in a reusable fashion.In addition,we provide an original visualization architecture that is integrative and based on the explored technologies.In the end,we propose a prototype system of marine environmental data of the South China Sea for visualizations of Argo floats,sea surface temperature fields,sea current fields,salinity,in-situ investigation data,and ocean stations.An integration visualization architecture is illustrated on the prototype system,which highlights the process-oriented temporal visualization method and demonstrates the benefit of the architecture and the methods described in this study.
基金supported by the Fundamental Research Funds for the Central Universities(2232019G-02 and2232019A3-02)Donghua University Distinguished Young Professor Program(LZB2019002)Shanghai Rising-Star Program(20QA1400300)。
文摘Daily exposure under solar ultraviolet(UV)and infrared(IR)is prone to cause skin cancer and photoaging.Real-time monitoring of the environmental UV index and IR radiation temperature during outdoor activities can enhance awareness and strengthen personal protection.It is a challenge to design flexible,wearable devices(with measurement capabilities)that can be integrated with apparels.Here,microfluidic spinning technology(MST)was used for the continuous and large-scale fabrication of eco-friendly coresheath Janus fibers with a well-defined axially symmetric Janus core.One side of the core was sensitive to UV light and the opposite was sensitive to IR radiation.Textiles woven with Janus fibers showed excellent independent reversible color responses to dual-wavelength stimulation.Such textiles switched among four colors under UV and IR irradiation,both individually and in combination.The color gradient of the textiles changed significantly with increasing UV intensity(UV index).After 60 cycles of UV/IR stimulation and 50 washes,the change rate of the comprehensive chromatic aberration(ΔE_(ab)^(*))of the textiles under different conditions was only 0.42%-4.71%.This was attributed to the unique structure of the fibers.The three-line striped textiles demonstrated the potential of the fibers to be used as wearable energy-free realtime visual monitors of the UV index and IR radiation temperature.