期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于可穿戴惯性传感技术的人体步态阶段识别
1
作者 陈斯琪 寇俊辉 +3 位作者 陈小路 吴铭渝 付国荣 郭良杰 《安全与环境工程》 CAS CSCD 北大核心 2024年第4期11-19,36,共10页
为了实现基于可穿戴惯性传感技术的人体步态阶段识别,开发了基于特征选择的人体步态阶段识别模型、基于时间比例优化的人体步态阶段识别模型和基于机器学习多数据类型、多特征、多分类器的人体步态阶段识别模型,并对比了3种模型的步态... 为了实现基于可穿戴惯性传感技术的人体步态阶段识别,开发了基于特征选择的人体步态阶段识别模型、基于时间比例优化的人体步态阶段识别模型和基于机器学习多数据类型、多特征、多分类器的人体步态阶段识别模型,并对比了3种模型的步态阶段识别效果。结果表明:基于特征选择的人体步态阶段识别模型的平均识别准确率为73.66%;基于时间比例优化的人体步态阶段识别模型的平均识别准确率为90.96%;利用脚背处俯仰角数据和加速度数据训练得到的基于机器学习的人体步态阶段识别模型的平均识别准确率分别为97.04%、86.80%;针对不同的步态阶段和使用场景,可差异化选择不同的识别方法以获得理想的识别效果;综合采用时间比例优化算法和机器学习方法可以获得较高的综合识别准确率。该研究可为进一步开展基于可穿戴式传感器的人体行为相关研究提供参考。 展开更多
关键词 人体步态阶段识别 可穿戴惯性传感技术 特征选择 时间比例优化 机器学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部