期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
内涵与外延之辩:基于含糊性语义解释演进的分析 被引量:2
1
作者 张立英 张君 《逻辑学研究》 CSSCI 2021年第2期68-87,共20页
在含糊性问题研究领域,多值语义解释和超赋值语义解释是两个经典的研究进路。相较多值语义中的经典三值解释和基于概率赋值的模糊逻辑解释,范启德(1975)给出的超赋值语义由于引入了基于可能世界语义的可精确化结构,具有更强的表达力,能... 在含糊性问题研究领域,多值语义解释和超赋值语义解释是两个经典的研究进路。相较多值语义中的经典三值解释和基于概率赋值的模糊逻辑解释,范启德(1975)给出的超赋值语义由于引入了基于可能世界语义的可精确化结构,具有更强的表达力,能够弥补三值和模糊逻辑处理的很多不足。距离超赋值语义发表40余年后,秋叶研(2017)给出了同样满足可精确化结构条件的一个布尔多值解释。由于超赋值语义一直被当作典型的内涵语义处理方式,而在含糊性问题研究领域,布尔多值方法却在大多数时候被认为是模糊逻辑这个基于概率处理的典型的外延语义的复杂版本,内涵语义与外延语义的殊途同归,非常值得仔细思考和探究。本文将结合含糊性问题研究领域的多值语义解释和超赋值语义解释的演进过程,以内涵语义和外延语义的区分为切入点,最终指出,(当下主流定义下的)内涵语义与外延语义的界限是模糊的,而在原有界定基础上,对内涵语义增加“内涵语义要可以表达非线序的偏序结构”这一限制,能够进一步对内涵语义和外延语义进行区分。 展开更多
关键词 含糊性 超赋值 可精确化 布尔多值语义 内涵 外延 偏序 线序
下载PDF
New Exact Solutions of (1+1)-Dimensional Coupled Integrable Dispersionless System
2
作者 戴朝卿 杨琴 王悦悦 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第4期622-628,共7页
This paper applies the exp-function method, which was originally proposed to find new exact travelling wave solutions of nonlinear evolution equations, to the Riccati equation, and some exact solutions of this equatio... This paper applies the exp-function method, which was originally proposed to find new exact travelling wave solutions of nonlinear evolution equations, to the Riccati equation, and some exact solutions of this equation are obtained. Based on the Riccati equation and its exact solutions, we find new and more general variable separation solutions with two arbitrary functions of (1+1)-dimensional coupled integrable dispersionless system. As some special examples, some new solutions can degenerate into variable separation solutions reported in open literatures. By choosing suitably two independent variables p(x) and q(t) in our solutions, the annihilation phenomena of the fiat-basin soliton, arch-basin soliton, and fiat-top soliton are discussed. 展开更多
关键词 variable separation solutions (1 1)-dimensional coupled integrable dispersionless system expfunction method Riccati equation
下载PDF
RECENT PROGRESS ON CONTROLLABILITY/OB SERVABILITY FOR SYSTEMS GOVERNED BY PARTIAL DIFFERENTIAL EQUATIONS 被引量:1
3
作者 Hongheng LI Qi LU Xu ZHANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2010年第3期527-545,共19页
The main purpose of this paper is to overview some recent methods and results on controllability/observability problems for systems governed by partial differential equations. First, the authors review the theory for ... The main purpose of this paper is to overview some recent methods and results on controllability/observability problems for systems governed by partial differential equations. First, the authors review the theory for linear partial differential equations, including the iteration method for the null controllability of the time-invariant heat equation and the Rellich-type multiplier method for the exact controllability of the time-invariant wave equation, and especially a unified controllability/observability theory for parabolic and hyperbolic equations based on a global Carleman estimate. Then, the authors present sharp global controllability results for both semi-linear parabolic and hyperbolic equations, based on linearization approach, sharp observability estimates for the corresponding linearized systems and the fixed point argument. Finally, the authors survey the local null controllability result for a class of quasilinear parabolic equations based on the global Carleman estimate, and the local exact controllability result for general hyperbolic equations based on a new unbounded perturbation techniaue. 展开更多
关键词 CONTROLLABILITY hyperbolic equations OBSERVABILITY parabolic equations.
原文传递
Integrability and Solutions of the(2+1)-dimensional Hunter–Saxton Equation
4
作者 蔡红柳 屈长征 《Communications in Theoretical Physics》 SCIE CAS CSCD 2016年第4期397-404,共8页
In this paper,the(2+1)-dimensional Hunter-Saxton equation is proposed and studied.It is shown that the(2+1)-dimensional Hunter–Saxton equation can be transformed to the Calogero–Bogoyavlenskii–Schiff equation by re... In this paper,the(2+1)-dimensional Hunter-Saxton equation is proposed and studied.It is shown that the(2+1)-dimensional Hunter–Saxton equation can be transformed to the Calogero–Bogoyavlenskii–Schiff equation by reciprocal transformations.Based on the Lax-pair of the Calogero–Bogoyavlenskii–Schiff equation,a non-isospectral Lax-pair of the(2+1)-dimensional Hunter–Saxton equation is derived.In addition,exact singular solutions with a finite number of corners are obtained.Furthermore,the(2+1)-dimensional μ-Hunter–Saxton equation is presented,and its exact peaked traveling wave solutions are derived. 展开更多
关键词 Hunter–Saxton equation singular solution μ-Hunter–Saxton equation peaked traveling wave solution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部