期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
GL(2,p)的一类可约子群及Cayley图
1
作者 田明欣 李学文 宋庆龙 《河北大学学报(自然科学版)》 CAS 北大核心 2006年第4期337-340,共4页
对GL(2,p)的阶与p互素的可约子群的特征进行了讨论,给出了这类可约子群的具体结构,并且研究了由这些子群确定的一类Cayley图的性质.
关键词 可约子群 循环群 弧传递Cayley图
下载PDF
The calculation for C-G coefficients
2
作者 王爱芬 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第5期564-567,共4页
The eigenfunction method put forward by Chen Jin-quan is illustrated. We apply this theory to the space group D1_ 6h. The selection rules of this space are worked out in the points of higher symmetry A,K,H in the firs... The eigenfunction method put forward by Chen Jin-quan is illustrated. We apply this theory to the space group D1_ 6h. The selection rules of this space are worked out in the points of higher symmetry A,K,H in the first Brillion Zone. The C-G coefficients are calculated for K.HA. 展开更多
关键词 EIGENFUNCTION class operator class space representation group irreducible basis subgroup chain
下载PDF
Quantum Groups by Ore Extensions Associated withGroup Algebras
3
作者 李立斌 李尚志 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2002年第2期205-211,共7页
As a continuation of the work of Beattie on quantum groups constructed byOre extensions, in this paper, we characterize their centre and discuss the category ofquantum Yang-Baxter modules over them. In addition, we de... As a continuation of the work of Beattie on quantum groups constructed byOre extensions, in this paper, we characterize their centre and discuss the category ofquantum Yang-Baxter modules over them. In addition, we determine all finite dimen-sional irreducible representations over these quantum groups. 展开更多
关键词 Quantum group CENTRE quantum Yang-Baxter module irreducible repre-sentation.
下载PDF
Grbner-Shirshov Bases of Irreducible Modules of the Quantum Group of Type G_2
4
作者 Ghani USTA Abdukadir OBUL 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2016年第3期427-440,共14页
First, the authors give a GrSbner-Shirshov basis of the finite-dimensional irre- ducible module Vq(λ) of the Drinfeld-Jimbo quantum group Uq(G2) by using the double free module method and the known GrSbner-Shirsh... First, the authors give a GrSbner-Shirshov basis of the finite-dimensional irre- ducible module Vq(λ) of the Drinfeld-Jimbo quantum group Uq(G2) by using the double free module method and the known GrSbner-Shirshov basis of Uq(G2). Then, by specializing a suitable version of Uq (G2) at q = 1, they get a GrSbner-Shirshov basis of the universal enveloping algebra U(G2) of the simple Lie algebra of type G2 and the finite-dimensional irreducible U(G2)-module V(λ). 展开更多
关键词 Quantum group GrSbner-Shirshov basis Double free module Indecom-posable module Highest weight module
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部