The current Internet architecture was designed on the basis of a triple bindings model, which could meet the needs of the early Internet. However, with the tremendous growth of the Internet and the continuous innovati...The current Internet architecture was designed on the basis of a triple bindings model, which could meet the needs of the early Internet. However, with the tremendous growth of the Internet and the continuous innovations of applications, the triple bindings(namely, control/data binding, resource/location binding and user/network binding) have given rise to many problems for the Internet, such as scalability, mobility, and security. In order to solve these problems, many network techniques have been developed. Besides, novel future Internet architectures including Information-Centric Networks and Software-Defined Networks have emerged. However, these architectures only partially decouple the triple bindings. To completely separate the triple bindings, Smart Collaborative Identifier Networks(SINET) is proposed. There have been many research efforts on SINET, which built the foundation of SINET being a promising future Internet. In this paper, we comprehensively introduce SINET and these related research works. We start by introducing the motivation for SINET, explain its fundamental concepts and how it can make a difference. Next, we present in details the design principles of every layer in SINET, explaining how it can decouple the triple bindings and solve the problems of the current Internet. Finally, we discuss the state-of-theart challenges in SINET. We investigate the ongoing research works and commercial products in SINET, with aspects such as scalability, mobility, security and reliability.展开更多
The self-similar multiplicative theory(SSM theory), aims to interpret the scaling behavior of the temperature structure function. In the present paper, the author report results from a numerical simulation of atmosphe...The self-similar multiplicative theory(SSM theory), aims to interpret the scaling behavior of the temperature structure function. In the present paper, the author report results from a numerical simulation of atmospheric turbulent convection in order to verify this theory. The simulation was based on a shell model which was deduced from simplified atmospheric convection equations. The numerical results agreed well with the theory prediction of scaling law from the first order to the eighth order. They also showed that the prediction of this theory was better than that given by the Kolmogorov's theory in 1941, log-normal, and β model theories.展开更多
It is common to assume that structures are designed in view of 50 year life cycle as per Euro-Code 2 and other codes. In special cases, structures are designed in view of longer life cycle, such as bridges, important ...It is common to assume that structures are designed in view of 50 year life cycle as per Euro-Code 2 and other codes. In special cases, structures are designed in view of longer life cycle, such as bridges, important infrastructure facilities, important religious structures or in case of extended returning period of seismic event or floods. Beside issues of durability and maintenance aspects, this involves also the need to cover the probability of exceeding characteristic design live loads during the extended period, while keeping the same levels of the accepted risk that were assumed by the various codes, as good enough for the standard 50 year life cycle. Bearing in mind that design procedures, formulations, materials characteristic strengths and partial safety factors are used for these structures as per the existing codes, scaling of partial safety factors, or alternatively an additional "compensating" factor is required. A simplified approach and procedure to arrive at a reasonable calibration of the code safety factors based on 50 years to compensate for an extended life cycle, based upon structural reliability considerations, is proposed.展开更多
This work attempts to extend the fundamental theory for classic gas dynamics to viscous compressible flow,of which aeroacoustics will naturally be a special branch.As a continuation of Part I.Unbounded fluid(Mao et al...This work attempts to extend the fundamental theory for classic gas dynamics to viscous compressible flow,of which aeroacoustics will naturally be a special branch.As a continuation of Part I.Unbounded fluid(Mao et al.,2022),this paper studies the source of longitudinal field at solid boundary,caused by the on-wall kinematic and viscous dynamic coupling of longitudinal and transverse processes.We find that at this situation the easiest choice for the two independent thermodynamic variables is the dimensionless pressure P and temperature T.The two-level structure of boundary dynamics of longitudinal field is obtained by applying the continuity equation and its normal derivative to the surface.We show that the boundary dilatation flux represents faithfully the boundary production of vortex sound and entropy sound,and the mutual generation mechanism of the longitudinal and transverse fields on the boundary does not occur symmetrically"at the samc level,but appears along a zigzag route.At the first level,it is the pressure gradient that generates vorticity unidirectionally;while at the second level,it is the vorticity that generates dilatation unidirectionally.展开更多
Based on the immersed boundary method,a fast simulation for solving unsteady,incompressible,viscous flow associated with the oscillating cascade is established on a quasi-three-dimensional coordinate system.The numeri...Based on the immersed boundary method,a fast simulation for solving unsteady,incompressible,viscous flow associated with the oscillating cascade is established on a quasi-three-dimensional coordinate system.The numerical method is applied to the simulation of the flow passing an oscillating circular cylinder which is forced to move in X direction under prescribed motions in water at rest at low Keulegan-Carpenter numbers.Then vor-tex-induced vibration of a cylinder with two degrees of freedom which oscillates in in-line direction and transverse direction is simulated using this method.The results are in good agreement with the previous research.Then the method is extended to the oscillating cascade simulation of making various comparisons.It is found that the IBPA(inter blade phase angle) will change as the time goes on,because of the non-uniformity of the flow in the circumferential direction,until the oscillating cascade goes to a stable situation.The reduced velocity and the number of blades are chosen to investigate the effects of them on IBPA.The results indicate that both the reduced velocity and the number of blades are the main factors which influence IBPA.It is worth noting that the coupling process is not necessary to generate any body-fitting grids,which makes it much faster in computational process for such a complicated fluid-structure interaction problem.展开更多
The main objective of this article is to study both dynamic and structural transitions of the Taylor-Couette flow, by using the dynamic transition theory and geometric theory of incompressible flows developed recently...The main objective of this article is to study both dynamic and structural transitions of the Taylor-Couette flow, by using the dynamic transition theory and geometric theory of incompressible flows developed recently by the authors. In particular, it is shown that as the Taylor number crosses the critical number, the system undergoes either a continuous or a jump dynamic transition, dictated by the sign of a computable, nondimensional parameter R. In addition, it is also shown that the new transition states have the Taylor vortex type of flow structure, which is structurally stable.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)under Grant No.61232017the Fundamental Research Funds for the Central Universities under Grant NO.2017YJS032
文摘The current Internet architecture was designed on the basis of a triple bindings model, which could meet the needs of the early Internet. However, with the tremendous growth of the Internet and the continuous innovations of applications, the triple bindings(namely, control/data binding, resource/location binding and user/network binding) have given rise to many problems for the Internet, such as scalability, mobility, and security. In order to solve these problems, many network techniques have been developed. Besides, novel future Internet architectures including Information-Centric Networks and Software-Defined Networks have emerged. However, these architectures only partially decouple the triple bindings. To completely separate the triple bindings, Smart Collaborative Identifier Networks(SINET) is proposed. There have been many research efforts on SINET, which built the foundation of SINET being a promising future Internet. In this paper, we comprehensively introduce SINET and these related research works. We start by introducing the motivation for SINET, explain its fundamental concepts and how it can make a difference. Next, we present in details the design principles of every layer in SINET, explaining how it can decouple the triple bindings and solve the problems of the current Internet. Finally, we discuss the state-of-theart challenges in SINET. We investigate the ongoing research works and commercial products in SINET, with aspects such as scalability, mobility, security and reliability.
基金supported by the strategy guide for the specific task of the Chinese Academy of Sciences: Carbon-budget Certification to Deal with Climate Change and Relevant Issues (Grant No. XDA05000000)Big Tower Certification System and Comprehensive Observation (Grant No. XDA05040301)
文摘The self-similar multiplicative theory(SSM theory), aims to interpret the scaling behavior of the temperature structure function. In the present paper, the author report results from a numerical simulation of atmospheric turbulent convection in order to verify this theory. The simulation was based on a shell model which was deduced from simplified atmospheric convection equations. The numerical results agreed well with the theory prediction of scaling law from the first order to the eighth order. They also showed that the prediction of this theory was better than that given by the Kolmogorov's theory in 1941, log-normal, and β model theories.
文摘It is common to assume that structures are designed in view of 50 year life cycle as per Euro-Code 2 and other codes. In special cases, structures are designed in view of longer life cycle, such as bridges, important infrastructure facilities, important religious structures or in case of extended returning period of seismic event or floods. Beside issues of durability and maintenance aspects, this involves also the need to cover the probability of exceeding characteristic design live loads during the extended period, while keeping the same levels of the accepted risk that were assumed by the various codes, as good enough for the standard 50 year life cycle. Bearing in mind that design procedures, formulations, materials characteristic strengths and partial safety factors are used for these structures as per the existing codes, scaling of partial safety factors, or alternatively an additional "compensating" factor is required. A simplified approach and procedure to arrive at a reasonable calibration of the code safety factors based on 50 years to compensate for an extended life cycle, based upon structural reliability considerations, is proposed.
基金supported by the National Natural Science Foundation of China(Grant Nos.12102365,91752202,11472016,11621202,and 12272371).
文摘This work attempts to extend the fundamental theory for classic gas dynamics to viscous compressible flow,of which aeroacoustics will naturally be a special branch.As a continuation of Part I.Unbounded fluid(Mao et al.,2022),this paper studies the source of longitudinal field at solid boundary,caused by the on-wall kinematic and viscous dynamic coupling of longitudinal and transverse processes.We find that at this situation the easiest choice for the two independent thermodynamic variables is the dimensionless pressure P and temperature T.The two-level structure of boundary dynamics of longitudinal field is obtained by applying the continuity equation and its normal derivative to the surface.We show that the boundary dilatation flux represents faithfully the boundary production of vortex sound and entropy sound,and the mutual generation mechanism of the longitudinal and transverse fields on the boundary does not occur symmetrically"at the samc level,but appears along a zigzag route.At the first level,it is the pressure gradient that generates vorticity unidirectionally;while at the second level,it is the vorticity that generates dilatation unidirectionally.
文摘Based on the immersed boundary method,a fast simulation for solving unsteady,incompressible,viscous flow associated with the oscillating cascade is established on a quasi-three-dimensional coordinate system.The numerical method is applied to the simulation of the flow passing an oscillating circular cylinder which is forced to move in X direction under prescribed motions in water at rest at low Keulegan-Carpenter numbers.Then vor-tex-induced vibration of a cylinder with two degrees of freedom which oscillates in in-line direction and transverse direction is simulated using this method.The results are in good agreement with the previous research.Then the method is extended to the oscillating cascade simulation of making various comparisons.It is found that the IBPA(inter blade phase angle) will change as the time goes on,because of the non-uniformity of the flow in the circumferential direction,until the oscillating cascade goes to a stable situation.The reduced velocity and the number of blades are chosen to investigate the effects of them on IBPA.The results indicate that both the reduced velocity and the number of blades are the main factors which influence IBPA.It is worth noting that the coupling process is not necessary to generate any body-fitting grids,which makes it much faster in computational process for such a complicated fluid-structure interaction problem.
基金supported by the National Science Foundation, the Office of Naval Research and the National Natural Science Foundation of China
文摘The main objective of this article is to study both dynamic and structural transitions of the Taylor-Couette flow, by using the dynamic transition theory and geometric theory of incompressible flows developed recently by the authors. In particular, it is shown that as the Taylor number crosses the critical number, the system undergoes either a continuous or a jump dynamic transition, dictated by the sign of a computable, nondimensional parameter R. In addition, it is also shown that the new transition states have the Taylor vortex type of flow structure, which is structurally stable.