The problem of multiple attribute decision making under fuzzy linguistic environments, in which decision makers can only provide their preferences (attribute values)in the form of trapezoid fuzzy linguistic variable...The problem of multiple attribute decision making under fuzzy linguistic environments, in which decision makers can only provide their preferences (attribute values)in the form of trapezoid fuzzy linguistic variables(TFLV), is studied. The formula of the degree of possibility between two TFLVs is defined, and some of its characteristics are studied. Based on the degree of possibility of fuzzy linguistic variables, an approach to ranking the decision alternatives in multiple attribute decision making with TFLV is developed. The trapezoid fuzzy linguistic weighted averaging (TFLWA) operator method is utilized to aggregate the decision information, and then all the alternatives are ranked by comparing the degree of possibility of TFLV. The method can carry out linguistic computation processes easily without loss of linguistic information, and thus makes the decision results reasonable and effective. Finally, the implementation process of the proposed method is illustrated and analyzed by a practical example.展开更多
A decoding method complemented by Maximum Likelihood (ML) detection for V-BLAST (Verti- cal Bell Labs Layered Space-Time) system is presented. The ranked layers are divided into several groups. ML decoding is performe...A decoding method complemented by Maximum Likelihood (ML) detection for V-BLAST (Verti- cal Bell Labs Layered Space-Time) system is presented. The ranked layers are divided into several groups. ML decoding is performed jointly for the layers within the same group while the Decision Feedback Equalization (DFE) is performed for groups. Based on the assumption of QPSK modulation and the quasi-static flat fading channel, simulations are made to testify the performance of the proposed algorithm. The results show that the algorithm outperforms the original V-BLAST detection dramatically in Symbol Error Probability (SEP) per- formance. Specifically, Signal-to-Noise Ratio (SNR) improvement of 3.4dB is obtained for SEP of 10?2 (4×4 case), with a reasonable complexity maintained.展开更多
基金2008 Soft Science Program of Jiangsu Science and Technology Department (No.BR2008098)
文摘The problem of multiple attribute decision making under fuzzy linguistic environments, in which decision makers can only provide their preferences (attribute values)in the form of trapezoid fuzzy linguistic variables(TFLV), is studied. The formula of the degree of possibility between two TFLVs is defined, and some of its characteristics are studied. Based on the degree of possibility of fuzzy linguistic variables, an approach to ranking the decision alternatives in multiple attribute decision making with TFLV is developed. The trapezoid fuzzy linguistic weighted averaging (TFLWA) operator method is utilized to aggregate the decision information, and then all the alternatives are ranked by comparing the degree of possibility of TFLV. The method can carry out linguistic computation processes easily without loss of linguistic information, and thus makes the decision results reasonable and effective. Finally, the implementation process of the proposed method is illustrated and analyzed by a practical example.
基金Supported by the National Natural Science Foundation of China (No.60172029).
文摘A decoding method complemented by Maximum Likelihood (ML) detection for V-BLAST (Verti- cal Bell Labs Layered Space-Time) system is presented. The ranked layers are divided into several groups. ML decoding is performed jointly for the layers within the same group while the Decision Feedback Equalization (DFE) is performed for groups. Based on the assumption of QPSK modulation and the quasi-static flat fading channel, simulations are made to testify the performance of the proposed algorithm. The results show that the algorithm outperforms the original V-BLAST detection dramatically in Symbol Error Probability (SEP) per- formance. Specifically, Signal-to-Noise Ratio (SNR) improvement of 3.4dB is obtained for SEP of 10?2 (4×4 case), with a reasonable complexity maintained.