A fundamental element of sustainable development is that humans live within nature's biological capacity. Quantifying this, however, remains a significant challenge for which there are many emerging tools. The con...A fundamental element of sustainable development is that humans live within nature's biological capacity. Quantifying this, however, remains a significant challenge for which there are many emerging tools. The concept of the Ecological Footprint is one such accounting tool for comprehensive assessment of the status of sustainable development, based on integration of resource consumption and land capacity, reflecting the human impact on the environment. A region's development is defined as unsustainable when the Ecological Footprint surpasses the biological capacity. In this paper, the Ecological Footprint concept was applied in assessing the development of Yunnan Province, China in a period between 1988 and 2006. The results showed that the Ecological Footprint per capita in Yunnan rose from 0.854 gha in 1988 to 2.11 gha in 2006. Ecological deficit, defined as when the human demand on the land surpasses the regions biological productive capacity, emerged in 1991 and quickly increased from 0.02 gha in 1991 to 1.05 gha in 2006. The increase in the ecological deficit is primarily a result of the rapid increase in population and consumption level. To achieve sustainable development in Yunnan, production and consumption rates need to be modified.展开更多
Based on the function analysis of surge bunker in mine haulage system, the authors raise the calculation methods of the total output of a mine haulage system. Taking the maximum of system’s total throughput as a obje...Based on the function analysis of surge bunker in mine haulage system, the authors raise the calculation methods of the total output of a mine haulage system. Taking the maximum of system’s total throughput as a objective, the method of determining the surge bunker’s rational size is put forward. Also, the problems of rational position of surge bunker are analysesed.展开更多
The objective in this study is to apply the sustainable chemistry and photo-thermal synthesis technology to produce the sustainable eco-superplasticiser for the sustainable high performance SCC concrete especially in ...The objective in this study is to apply the sustainable chemistry and photo-thermal synthesis technology to produce the sustainable eco-superplasticiser for the sustainable high performance SCC concrete especially in hot tropical countries. A photo-thermal synthesized eco-superplasticiser (PSES) was produced by using photo-thermal catalyst in a solar chemical reactor. In this preliminary study, an unique high early strength of SCC concrete has been successfully produced by imposing an unique proportion of the photo-thermal-synthesized eco- Superplasticiser (PSES), local fly ash, sand and aggregate. The SCC concrete is preliminary tried in the precast concrete product to produce the complicated geometries as Tunnel segment, U-shape beam, and Box girder which have the critical reinforcement and thin section concrete. Surprisingly, this SCC provide the benefits as eliminating steaming energy, increased productivity, and minimize pollution. These unique properties of sustainable SCC concrete can not be achieved by the convention concrete by using ligno, naphthalene and melamine base superplasficiser. The synthesized sustainable eco-superplasticiser is a perfect choice to fully utilized the renewable energy and improve the concrete working environment.展开更多
The importance and the necessary of researches on renewable energy have become a hot topic in recent years due to climate change and global warming. In addition, the fossil fuel reserves is facing rapid depletion on t...The importance and the necessary of researches on renewable energy have become a hot topic in recent years due to climate change and global warming. In addition, the fossil fuel reserves is facing rapid depletion on the earth. Currently, most researches have concentrated on producing biogas for heating, lighting, drying, cooking but lack in researching on electricity production because the possibility of producing biogas at households are common at small scale. Studying on alternative energy sources to replace traditional fuel for electric power generation brings new chances and great opportunities for development. This study presents an assessment electric power generation via water hyacinths and agricultural waste. In this paper, the evaluation electric power is generated by operating internal combustion engines which use biogas fuel to replace traditional fuel (diesel, gasoline). The results of the studies were demonstrated by experiments on the renewable energy production system at Hoa An Biotechnology Research and Experimental Center of Cantho University.展开更多
The European Union Framework Programme 71 Enerfish project aims to demonstrate a new poly-generation application with renewable energy sources for the fishery industry in Vietnam. The fish processing plant under consi...The European Union Framework Programme 71 Enerfish project aims to demonstrate a new poly-generation application with renewable energy sources for the fishery industry in Vietnam. The fish processing plant under consideration can be made by energy self-sufficient when all fish waste oil is processed into biodiesel and further converted to electricity and heat (for cooling) in a CHP (combined heat and power) unit. The purpose of the present paper is to discuss the profitability of such plants in southeast Asia. The economic model shows that electricity production is, due to the low electricity tariff, uneconomical (except during electricity blackout), even if cogeneration heat can be utilized. This prompt a design of the plant whereby the necessary heat for the biodiesel process is taken from the waste heat produced by the compressors of a CO2 cooling system. According to the calculations and assumptions of the present study, the profitability of biodiesel production from fish cleaning wastes in Vietnam depends strongly on the market prices for fish waste and fish oil. Different business case scenarios are described.展开更多
In the small country of Ecuador, all environmental risks of the production and consumption of fossil fuels can be observed by damages through oil exploration in the amazonite rainforest and two tank ship accidents clo...In the small country of Ecuador, all environmental risks of the production and consumption of fossil fuels can be observed by damages through oil exploration in the amazonite rainforest and two tank ship accidents close by Galapagos Islands causing death of 10,000 marine iguanas and other species. Now Ecuador plans to replace all environmentally dangerous diesel generators from all four inhabited Galapagos Islands by a hybrid system using 100% renewable energy for electricity production. Since 2010 a hybrid system of two Jatropha oil generators with an electrical power of 69 kW (kWel) and a photovoltaic plant with an electrical peak power of 21 kW (kWpeak) is successfully providing electricity from renewable energy for inhabitants and tourists of Floreana Island. After more than 15.000 engine operation hours of each engine there is no engine defect. For fuel supply, the so-called "Living Fence" concept collecting Jatropha seeds by farmers and families from already existing 6,000 km hedges on Ecuadorian mainland was chosen to comply with highest biofuel sustainability standards. The Jatropha oil is produced in a decentralized so-called CompacTropha oil mill container following the ambitious German fuel quality standard DIN51605. Since 2010 Floreana project successfully demonstrates that it is possible to replace diesel gen sets by generators fueled with pure Jatropha oil from decentralized sustainable production.展开更多
基金funded by the National Key Project for Basic Research of China (973), (Grant No.2003CB415100)
文摘A fundamental element of sustainable development is that humans live within nature's biological capacity. Quantifying this, however, remains a significant challenge for which there are many emerging tools. The concept of the Ecological Footprint is one such accounting tool for comprehensive assessment of the status of sustainable development, based on integration of resource consumption and land capacity, reflecting the human impact on the environment. A region's development is defined as unsustainable when the Ecological Footprint surpasses the biological capacity. In this paper, the Ecological Footprint concept was applied in assessing the development of Yunnan Province, China in a period between 1988 and 2006. The results showed that the Ecological Footprint per capita in Yunnan rose from 0.854 gha in 1988 to 2.11 gha in 2006. Ecological deficit, defined as when the human demand on the land surpasses the regions biological productive capacity, emerged in 1991 and quickly increased from 0.02 gha in 1991 to 1.05 gha in 2006. The increase in the ecological deficit is primarily a result of the rapid increase in population and consumption level. To achieve sustainable development in Yunnan, production and consumption rates need to be modified.
文摘Based on the function analysis of surge bunker in mine haulage system, the authors raise the calculation methods of the total output of a mine haulage system. Taking the maximum of system’s total throughput as a objective, the method of determining the surge bunker’s rational size is put forward. Also, the problems of rational position of surge bunker are analysesed.
文摘The objective in this study is to apply the sustainable chemistry and photo-thermal synthesis technology to produce the sustainable eco-superplasticiser for the sustainable high performance SCC concrete especially in hot tropical countries. A photo-thermal synthesized eco-superplasticiser (PSES) was produced by using photo-thermal catalyst in a solar chemical reactor. In this preliminary study, an unique high early strength of SCC concrete has been successfully produced by imposing an unique proportion of the photo-thermal-synthesized eco- Superplasticiser (PSES), local fly ash, sand and aggregate. The SCC concrete is preliminary tried in the precast concrete product to produce the complicated geometries as Tunnel segment, U-shape beam, and Box girder which have the critical reinforcement and thin section concrete. Surprisingly, this SCC provide the benefits as eliminating steaming energy, increased productivity, and minimize pollution. These unique properties of sustainable SCC concrete can not be achieved by the convention concrete by using ligno, naphthalene and melamine base superplasficiser. The synthesized sustainable eco-superplasticiser is a perfect choice to fully utilized the renewable energy and improve the concrete working environment.
文摘The importance and the necessary of researches on renewable energy have become a hot topic in recent years due to climate change and global warming. In addition, the fossil fuel reserves is facing rapid depletion on the earth. Currently, most researches have concentrated on producing biogas for heating, lighting, drying, cooking but lack in researching on electricity production because the possibility of producing biogas at households are common at small scale. Studying on alternative energy sources to replace traditional fuel for electric power generation brings new chances and great opportunities for development. This study presents an assessment electric power generation via water hyacinths and agricultural waste. In this paper, the evaluation electric power is generated by operating internal combustion engines which use biogas fuel to replace traditional fuel (diesel, gasoline). The results of the studies were demonstrated by experiments on the renewable energy production system at Hoa An Biotechnology Research and Experimental Center of Cantho University.
文摘The European Union Framework Programme 71 Enerfish project aims to demonstrate a new poly-generation application with renewable energy sources for the fishery industry in Vietnam. The fish processing plant under consideration can be made by energy self-sufficient when all fish waste oil is processed into biodiesel and further converted to electricity and heat (for cooling) in a CHP (combined heat and power) unit. The purpose of the present paper is to discuss the profitability of such plants in southeast Asia. The economic model shows that electricity production is, due to the low electricity tariff, uneconomical (except during electricity blackout), even if cogeneration heat can be utilized. This prompt a design of the plant whereby the necessary heat for the biodiesel process is taken from the waste heat produced by the compressors of a CO2 cooling system. According to the calculations and assumptions of the present study, the profitability of biodiesel production from fish cleaning wastes in Vietnam depends strongly on the market prices for fish waste and fish oil. Different business case scenarios are described.
文摘In the small country of Ecuador, all environmental risks of the production and consumption of fossil fuels can be observed by damages through oil exploration in the amazonite rainforest and two tank ship accidents close by Galapagos Islands causing death of 10,000 marine iguanas and other species. Now Ecuador plans to replace all environmentally dangerous diesel generators from all four inhabited Galapagos Islands by a hybrid system using 100% renewable energy for electricity production. Since 2010 a hybrid system of two Jatropha oil generators with an electrical power of 69 kW (kWel) and a photovoltaic plant with an electrical peak power of 21 kW (kWpeak) is successfully providing electricity from renewable energy for inhabitants and tourists of Floreana Island. After more than 15.000 engine operation hours of each engine there is no engine defect. For fuel supply, the so-called "Living Fence" concept collecting Jatropha seeds by farmers and families from already existing 6,000 km hedges on Ecuadorian mainland was chosen to comply with highest biofuel sustainability standards. The Jatropha oil is produced in a decentralized so-called CompacTropha oil mill container following the ambitious German fuel quality standard DIN51605. Since 2010 Floreana project successfully demonstrates that it is possible to replace diesel gen sets by generators fueled with pure Jatropha oil from decentralized sustainable production.