期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于随机森林算法以及可见–近红外光谱的苹果糖度无损检测
1
作者 蒋雨鹏 任玉 +3 位作者 蔡红星 周建伟 王康华 孙哲 《传感器技术与应用》 2022年第2期128-137,共10页
本文基于可见–近红外光谱分析技术结合随机森林算法实现不同产地的苹果糖度无损检测。研究通过漫反射采集系统收集三种不同产地苹果的光谱数据后经多种预处理办法比较,采用标准正态变换分别结合偏最小二乘、随机森林算法建立苹果糖度... 本文基于可见–近红外光谱分析技术结合随机森林算法实现不同产地的苹果糖度无损检测。研究通过漫反射采集系统收集三种不同产地苹果的光谱数据后经多种预处理办法比较,采用标准正态变换分别结合偏最小二乘、随机森林算法建立苹果糖度检测通用模型。结果显示该模型预测集相关系数(Rp2)和预测均方根误差(RMSEP)分别为0.89和0.44,相比偏最小二乘法检测模型相关系数(Rp2)和预测均方根误差(RMSEP)的0.85和0.47,均有提高。研究扩大了单一品种模型的预测范围,结合随机森林算法有效地提升模型的预测稳健性,对进一步实现水果品质无损检测具有良好的潜在意义。 展开更多
关键词 可溶性固形物 可见–近红外光谱 随机森林 无损检测
下载PDF
溶胶凝胶法制备的La_(2–x)M_xCuO_(4–δ)晶体的UV–Vis–NIR光学性质(英文)
2
作者 李意峰 黄剑锋 +1 位作者 曹丽云 吴建鹏 《硅酸盐学报》 EI CAS CSCD 北大核心 2012年第3期432-435,共4页
采用溶胶–凝胶法制备了La2CuO4和La2–xMxCuO4–δ(M=Ca、Sr和Ba)晶体。通过X射线衍射、扫描电子显微镜和紫外–可见–近红外光谱对La2CuO4和La2–xMxCuO4–δ(x=0.1)粉体进行了测试和表征。结果表明,700℃煅烧2 h,可以获得单相La2CuO4... 采用溶胶–凝胶法制备了La2CuO4和La2–xMxCuO4–δ(M=Ca、Sr和Ba)晶体。通过X射线衍射、扫描电子显微镜和紫外–可见–近红外光谱对La2CuO4和La2–xMxCuO4–δ(x=0.1)粉体进行了测试和表征。结果表明,700℃煅烧2 h,可以获得单相La2CuO4和La2–xMxCuO4–δ(M=Ca、Sr和Ba),且均为正交晶型结构。光谱性质表明,La2CuO4和La2–xMxCuO4–δ系化合物在紫外–可见和近红外范围都有较宽的吸收。La2CuO4、La1.9Ca0.1CuO4–δ、La1.9Sr0.1CuO4–δ和La1.9Ba0.1CuO4–δ的带隙分别为1.44、1.57、1.40 eV和1.37 eV。带隙的变化是由于碱土金属离子的半径不同,造成对键的不匹配性的影响不同而引起的。 展开更多
关键词 铜酸镧 碱土金属取代铜酸镧 紫外–可见–近红外光谱 带隙 溶胶–凝胶法
原文传递
On-site variety discrimination of tomato plant using visible-near infrared reflectance spectroscopy 被引量:2
3
作者 Hui-rong XU Peng YU Xia-ping FU Yi-bin YING 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2009年第2期126-132,共7页
The use of visible-near infrared (NIR) spectroscopy was explored as a tool to discriminate two new tomato plant varieties in China (Zheza205 and Zheza207). In this study, 82 top-canopy leaves of Zheza205 and 86 top-ca... The use of visible-near infrared (NIR) spectroscopy was explored as a tool to discriminate two new tomato plant varieties in China (Zheza205 and Zheza207). In this study, 82 top-canopy leaves of Zheza205 and 86 top-canopy leaves of Zheza207 were measured in visible-NIR reflectance mode. Discriminant models were developed using principal component analysis (PCA), discriminant analysis (DA), and discriminant partial least squares (DPLS) regression methods. After outliers detection, the samples were randomly split into two sets, one used as a calibration set (n=82) and the remaining samples as a validation set (n=82). When predicting the variety of the samples in validation set, the classification correctness of the DPLS model after optimizing spectral pretreatment was up to 93%. The DPLS model with raw spectra after multiplicative scatter cor- rection and Savitzky-Golay filter smoothing pretreatments had the best satisfactory calibration and prediction abilities (correlation coefficient of calibration (Rc)=0.920, root mean square errors of calibration=0.196, and root mean square errors of predic- tion=0.216). The results show that visible-NIR spectroscopy might be a suitable alternative tool to discriminate tomato plant varieties on-site. 展开更多
关键词 Visible-NIR spectroscopy Tomato plant variety DISCRIMINATION Principal component analysis (PCA) Discriminant analysis (DA) Discriminant partial least squares (DPLS)
原文传递
Neural network and principal component regression in non-destructive soluble solids content assessment:a comparison 被引量:4
4
作者 Kim-seng CHIA Herlina ABDUL RAHIM Ruzairi ABDUL RAHIM 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2012年第2期145-151,共7页
Visible and near infrared spectroscopy is a non-destructive,green,and rapid technology that can be utilized to estimate the components of interest without conditioning it,as compared with classical analytical methods.... Visible and near infrared spectroscopy is a non-destructive,green,and rapid technology that can be utilized to estimate the components of interest without conditioning it,as compared with classical analytical methods.The objective of this paper is to compare the performance of artificial neural network(ANN)(a nonlinear model)and principal component regression(PCR)(a linear model)based on visible and shortwave near infrared(VIS-SWNIR)(400-1000 nm)spectra in the non-destructive soluble solids content measurement of an apple.First,we used multiplicative scattering correction to pre-process the spectral data.Second,PCR was applied to estimate the optimal number of input variables.Third,the input variables with an optimal amount were used as the inputs of both multiple linear regression and ANN models.The initial weights and the number of hidden neurons were adjusted to optimize the performance of ANN.Findings suggest that the predictive performance of ANN with two hidden neurons outperforms that of PCR. 展开更多
关键词 Artificial neural network (ANN) Principal component regression (PCR) Visible and shortwave nearinfrared (VIS-SWNIR) Spectroscopy APPLE Soluble solids content (SSC)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部