The use of visible-near infrared (NIR) spectroscopy was explored as a tool to discriminate two new tomato plant varieties in China (Zheza205 and Zheza207). In this study, 82 top-canopy leaves of Zheza205 and 86 top-ca...The use of visible-near infrared (NIR) spectroscopy was explored as a tool to discriminate two new tomato plant varieties in China (Zheza205 and Zheza207). In this study, 82 top-canopy leaves of Zheza205 and 86 top-canopy leaves of Zheza207 were measured in visible-NIR reflectance mode. Discriminant models were developed using principal component analysis (PCA), discriminant analysis (DA), and discriminant partial least squares (DPLS) regression methods. After outliers detection, the samples were randomly split into two sets, one used as a calibration set (n=82) and the remaining samples as a validation set (n=82). When predicting the variety of the samples in validation set, the classification correctness of the DPLS model after optimizing spectral pretreatment was up to 93%. The DPLS model with raw spectra after multiplicative scatter cor- rection and Savitzky-Golay filter smoothing pretreatments had the best satisfactory calibration and prediction abilities (correlation coefficient of calibration (Rc)=0.920, root mean square errors of calibration=0.196, and root mean square errors of predic- tion=0.216). The results show that visible-NIR spectroscopy might be a suitable alternative tool to discriminate tomato plant varieties on-site.展开更多
Visible and near infrared spectroscopy is a non-destructive,green,and rapid technology that can be utilized to estimate the components of interest without conditioning it,as compared with classical analytical methods....Visible and near infrared spectroscopy is a non-destructive,green,and rapid technology that can be utilized to estimate the components of interest without conditioning it,as compared with classical analytical methods.The objective of this paper is to compare the performance of artificial neural network(ANN)(a nonlinear model)and principal component regression(PCR)(a linear model)based on visible and shortwave near infrared(VIS-SWNIR)(400-1000 nm)spectra in the non-destructive soluble solids content measurement of an apple.First,we used multiplicative scattering correction to pre-process the spectral data.Second,PCR was applied to estimate the optimal number of input variables.Third,the input variables with an optimal amount were used as the inputs of both multiple linear regression and ANN models.The initial weights and the number of hidden neurons were adjusted to optimize the performance of ANN.Findings suggest that the predictive performance of ANN with two hidden neurons outperforms that of PCR.展开更多
基金Project (No.60405003) supported by the National Natural Science Foundation of China
文摘The use of visible-near infrared (NIR) spectroscopy was explored as a tool to discriminate two new tomato plant varieties in China (Zheza205 and Zheza207). In this study, 82 top-canopy leaves of Zheza205 and 86 top-canopy leaves of Zheza207 were measured in visible-NIR reflectance mode. Discriminant models were developed using principal component analysis (PCA), discriminant analysis (DA), and discriminant partial least squares (DPLS) regression methods. After outliers detection, the samples were randomly split into two sets, one used as a calibration set (n=82) and the remaining samples as a validation set (n=82). When predicting the variety of the samples in validation set, the classification correctness of the DPLS model after optimizing spectral pretreatment was up to 93%. The DPLS model with raw spectra after multiplicative scatter cor- rection and Savitzky-Golay filter smoothing pretreatments had the best satisfactory calibration and prediction abilities (correlation coefficient of calibration (Rc)=0.920, root mean square errors of calibration=0.196, and root mean square errors of predic- tion=0.216). The results show that visible-NIR spectroscopy might be a suitable alternative tool to discriminate tomato plant varieties on-site.
基金Project(No.UTM.J.10.01/13.14/1/127/1 Jld 3(48))supported by the Zamalah Scholarship from the Universiti Teknologi Malaysia
文摘Visible and near infrared spectroscopy is a non-destructive,green,and rapid technology that can be utilized to estimate the components of interest without conditioning it,as compared with classical analytical methods.The objective of this paper is to compare the performance of artificial neural network(ANN)(a nonlinear model)and principal component regression(PCR)(a linear model)based on visible and shortwave near infrared(VIS-SWNIR)(400-1000 nm)spectra in the non-destructive soluble solids content measurement of an apple.First,we used multiplicative scattering correction to pre-process the spectral data.Second,PCR was applied to estimate the optimal number of input variables.Third,the input variables with an optimal amount were used as the inputs of both multiple linear regression and ANN models.The initial weights and the number of hidden neurons were adjusted to optimize the performance of ANN.Findings suggest that the predictive performance of ANN with two hidden neurons outperforms that of PCR.