Photocatalytic method has been intensively explored for Cr(VI)reduction owing to its efficient and environmentally friendly natures.In order to obtain a high efficiency in practical application,efficient photocatalyst...Photocatalytic method has been intensively explored for Cr(VI)reduction owing to its efficient and environmentally friendly natures.In order to obtain a high efficiency in practical application,efficient photocatalysts need to be developed.Here,ZnIn2S4/SnS2 with a three-dimensional(3D)heterostructure was prepared by a hydrothermal method and its photocatalytic performance in Cr(VI)reduction was investigated.When the mass ratio of SnS2 to ZnIn2S4 is 1:10,the ZnIn2S4/SnS2 composite exhibits the highest photocatalytic activity with 100%efficiency for Cr(VI)(50 mg/L)reduction within 70 min under visible-light irradiation,which is much higher than those of pure ZnIn2S4 and SnS2.The enhanced charge separation and the light absorption have been confirmed from the photoluminescence and UV-vis absorption spectra to be the two reasons for the increased activity towards photocatalytic Cr(VI)reduction.In addition,after three cycles of testing,no obvious degradation is observed with the 3D heterostructured ZnIn2S4/SnS2,which maintains a good photocatalytic stability.展开更多
An efficient visible-light-responsive BiOBr/TiO2 heterojunction nanocomposite was fabricated successfully using in-situ depositing technique at room temperature by introducing BiOBr onto the surface of TiO2 nano- belt...An efficient visible-light-responsive BiOBr/TiO2 heterojunction nanocomposite was fabricated successfully using in-situ depositing technique at room temperature by introducing BiOBr onto the surface of TiO2 nano- belts pre-prepared by hydrothermal reaction and etched with H2SO4. The obtained particles were characterized by XRD, SEM, TEM, XPS, UV-Vis DRS and PL techniques. BiOBr/TiO2 heterojunction nanocomposites with different mass ratios of m (BiOBr)/m (TiO2) were discussed in order to get the best photocatalytie activity, and BiOBr/TiO2-1.0 was proved to be the optimal mass ratio. BiOBr/TiO2-1.0 exhibited excellent photocatalytic activity in the degradation of RhB compared with TiO2 nanobelts, pure BiOBr and the mechanical mixture of TiO2 nanobelts and BiOBr. At last, a possible mechanism ofphotocatalytic enhancement was proposed.展开更多
It has been more than half a century since the release of the first Shimadzu UV-VIS (UV-visible) spectrophotometer QB-50 in 1952, and during this time more than 160,000 UV-VIS spectrometers have been produced and in...It has been more than half a century since the release of the first Shimadzu UV-VIS (UV-visible) spectrophotometer QB-50 in 1952, and during this time more than 160,000 UV-VIS spectrometers have been produced and installed in a wide variety of different applications. A lot of technical innovations have been implemented to improve the performance and significantly reduce the stray light levels. The latest innovation during development of sophisticated spectrophotometers is based on a new holographic exposure method and optimized etching process which has made it possible to produce both high-efficient and exceptionally low stray light gratings. These LO-RAY-LIGH~ gratings have guaranteed values of stray light at the intermediate position between zero-order and first-order lights. The values are measured by Shimadzu's laser stray-light-measuring system. The latest development in the series of UV-VIS spectrophotometers is the UV-2700 which is a true double beam double monochromator system in a compact design for high-precision spectral analysis of a wide range of samples including organic and inorganic compounds, biological samples, optical materials and photovoltaics. The high performance optical system is designed with "LO-RAY-LIGH" diffraction gratings, featuring highest efficiency and exceptionally low stray light. The spectrophotometer operates in the wavelength range from 185 nm to 900 nm and allows highly sophisticated applications such as direct measurement of high density samples up to 8 absorbance units without dilution.展开更多
Natural amber, copal resin and colophony are have investigated by UV-VIS, infrared and Raman spectrum. In order to distin- guish the natural amber, copal resin and colophony, we have successfully used the nondestructi...Natural amber, copal resin and colophony are have investigated by UV-VIS, infrared and Raman spectrum. In order to distin- guish the natural amber, copal resin and colophony, we have successfully used the nondestructive examination (NDE) technology. The results show that UV-VIS could not distinguish these compositions. The infrared spectra can distinguish them, but the technology may destroy the specimen. The Raman spectra show three characteristic peaks of vibration near position 932 cmq and position 1179 cmq of copal resin, which confirm the existence of terpenes compounds in it. In the Raman spectra of colophony, the vibration characteristic peak at position 1589 cmq, caused by the conjugate double bond of internal unsaturated resin acid, is the basis of the characteristic difference between colophony and natural amber. The advantages of the distin- guished technology by Raman spectroscopy are convenient and nondestructive examination for natural amber, copal resin and colophony.展开更多
基金the support of the National Natural Science Foundation of China (51702087 and 21673066)~~
文摘Photocatalytic method has been intensively explored for Cr(VI)reduction owing to its efficient and environmentally friendly natures.In order to obtain a high efficiency in practical application,efficient photocatalysts need to be developed.Here,ZnIn2S4/SnS2 with a three-dimensional(3D)heterostructure was prepared by a hydrothermal method and its photocatalytic performance in Cr(VI)reduction was investigated.When the mass ratio of SnS2 to ZnIn2S4 is 1:10,the ZnIn2S4/SnS2 composite exhibits the highest photocatalytic activity with 100%efficiency for Cr(VI)(50 mg/L)reduction within 70 min under visible-light irradiation,which is much higher than those of pure ZnIn2S4 and SnS2.The enhanced charge separation and the light absorption have been confirmed from the photoluminescence and UV-vis absorption spectra to be the two reasons for the increased activity towards photocatalytic Cr(VI)reduction.In addition,after three cycles of testing,no obvious degradation is observed with the 3D heterostructured ZnIn2S4/SnS2,which maintains a good photocatalytic stability.
基金Supported by the National Basic Research Program of China("973"Program,No.2014CB239300,No.2012CB720100)National Natural Science Foundation of China(No.21406164,No.21466035)Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110032110037,No.20130032120019)
文摘An efficient visible-light-responsive BiOBr/TiO2 heterojunction nanocomposite was fabricated successfully using in-situ depositing technique at room temperature by introducing BiOBr onto the surface of TiO2 nano- belts pre-prepared by hydrothermal reaction and etched with H2SO4. The obtained particles were characterized by XRD, SEM, TEM, XPS, UV-Vis DRS and PL techniques. BiOBr/TiO2 heterojunction nanocomposites with different mass ratios of m (BiOBr)/m (TiO2) were discussed in order to get the best photocatalytie activity, and BiOBr/TiO2-1.0 was proved to be the optimal mass ratio. BiOBr/TiO2-1.0 exhibited excellent photocatalytic activity in the degradation of RhB compared with TiO2 nanobelts, pure BiOBr and the mechanical mixture of TiO2 nanobelts and BiOBr. At last, a possible mechanism ofphotocatalytic enhancement was proposed.
文摘It has been more than half a century since the release of the first Shimadzu UV-VIS (UV-visible) spectrophotometer QB-50 in 1952, and during this time more than 160,000 UV-VIS spectrometers have been produced and installed in a wide variety of different applications. A lot of technical innovations have been implemented to improve the performance and significantly reduce the stray light levels. The latest innovation during development of sophisticated spectrophotometers is based on a new holographic exposure method and optimized etching process which has made it possible to produce both high-efficient and exceptionally low stray light gratings. These LO-RAY-LIGH~ gratings have guaranteed values of stray light at the intermediate position between zero-order and first-order lights. The values are measured by Shimadzu's laser stray-light-measuring system. The latest development in the series of UV-VIS spectrophotometers is the UV-2700 which is a true double beam double monochromator system in a compact design for high-precision spectral analysis of a wide range of samples including organic and inorganic compounds, biological samples, optical materials and photovoltaics. The high performance optical system is designed with "LO-RAY-LIGH" diffraction gratings, featuring highest efficiency and exceptionally low stray light. The spectrophotometer operates in the wavelength range from 185 nm to 900 nm and allows highly sophisticated applications such as direct measurement of high density samples up to 8 absorbance units without dilution.
基金the National Natural Science Foundation of China (Grant No. 51261011)the Science and Technology Program of Yunnan (Grant No. 2010DH025)
文摘Natural amber, copal resin and colophony are have investigated by UV-VIS, infrared and Raman spectrum. In order to distin- guish the natural amber, copal resin and colophony, we have successfully used the nondestructive examination (NDE) technology. The results show that UV-VIS could not distinguish these compositions. The infrared spectra can distinguish them, but the technology may destroy the specimen. The Raman spectra show three characteristic peaks of vibration near position 932 cmq and position 1179 cmq of copal resin, which confirm the existence of terpenes compounds in it. In the Raman spectra of colophony, the vibration characteristic peak at position 1589 cmq, caused by the conjugate double bond of internal unsaturated resin acid, is the basis of the characteristic difference between colophony and natural amber. The advantages of the distin- guished technology by Raman spectroscopy are convenient and nondestructive examination for natural amber, copal resin and colophony.