Ti^(3+) self-doped anatase three-dimensional(3D) TiO_2 hollow nanoboxes were synthesized via a topological transformation process involving template participation by a facile one-pot hydrothermal treatment with a...Ti^(3+) self-doped anatase three-dimensional(3D) TiO_2 hollow nanoboxes were synthesized via a topological transformation process involving template participation by a facile one-pot hydrothermal treatment with an ethanol solution of zinc powder and TiOF_2. It is worth noting that the 3D TiO_2 hollow nanoboxes are assembled from six single-crystal nanosheets and have dominant exposure of the {001} facets. It is found from EPR spectra that adding zinc powder is an environment-friendly and effective strategy to introduce Ti^(3+) and oxygen vacancy(Ov) into the bulk of 3D hollow nanoboxes rather than the surface, which is responsible for their enhanced visible photocatalytic properties.The photocatalytic activity was evaluated by measuring the formation rate of hydroxide free radicals using 7-hydroxycoumarin as a probe. The sample prepared with zinc/TiOF_2 mass ratio of0.25 exhibited the highest RhB photodegradation activity under visible-light irradiation with a degradation rate of 96%, which is 4.0-times higher than that of pure TiO_2. The results suggest a novel approach to construct in-situ 3D hierarchical TiO_2 hollow nanoboxes doped with Ti^(3+) and Ov without introducing any impurity elements for superior visible-light photocatalytic activity.展开更多
Nitrogen-doped HTiNbO5 nanosheets have been successfully synthesized by first exfoliating layered HTiNbO5 in tetrabutylammonium hydroxide (TBAOH) to obtain HTiNbO5 nanosheets and then heating the nanosheets with ure...Nitrogen-doped HTiNbO5 nanosheets have been successfully synthesized by first exfoliating layered HTiNbO5 in tetrabutylammonium hydroxide (TBAOH) to obtain HTiNbO5 nanosheets and then heating the nanosheets with urea. The resulting samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and N2 adsorption-desorption measurements. It was found that N-doping resulted in a much higher thermostability of the layered structure, intrinsic bandgap narrowing and a visible light response. The doped nitrogen atoms were mainly located in the interstitial sites of TiNbOs- lamellae and chemically bound to hydrogen ions. Compared with N-doped HTiNbOs, N-doped HTiNbO5 nanosheets had a much larger specific surface area and richer mesoporosity due to fee rather loose and irregular arrangement of fitanoniobate nanosheets. Both N-doped layered HTiNbOs and HTiNbO5 nanosheets showed a very high visible-light photocatalytic activity for the degradation of rhodamine B (RhB) aqueous solution. Moreover, due to the considerably larger surface area, richer mesoporosity and stronger acidity, N-doped HTiNbO5 nanosheets had an even higher activity than N-doped HTiNbOs, although the latter had a stronger absorption in the visible region. The dye molecules were mainly degraded to aliphatic organic compounds and partially mineralized to CO2 and/or CO, rather than being simply decolorized. The effect of photosensitization was insignificant and RhB was degraded mainly via the typical photocatalytic reaction routes. Two different reaction routes for the photodegradation of RhB under visible light irradiation over N-doped HTiNbO5 nanosheets have been proposed. The present method can be extended to a large number of layered metal oxides that have the characteristics of intercalation and exfoliation, thus providing new opportunities for the fabrication of highly effective and potentially practical visible-light photocatalysts.展开更多
基金supported by the National Natural Science Foundation of China(20702064,21177161,31402137)Hubei Province Science Fund for Distinguished Yong Scholars(2013CFA034)+2 种基金the Program for Excellent Talents in Hubei Province(RCJH15001)the Opening Project of Key Laboratory of Green Catalysis of Sichuan Institutes of High Education(LYZ1107)the Fundamental Research Funds for the Central University,South-Central University for Nationalities(CZP17077)~~
文摘Ti^(3+) self-doped anatase three-dimensional(3D) TiO_2 hollow nanoboxes were synthesized via a topological transformation process involving template participation by a facile one-pot hydrothermal treatment with an ethanol solution of zinc powder and TiOF_2. It is worth noting that the 3D TiO_2 hollow nanoboxes are assembled from six single-crystal nanosheets and have dominant exposure of the {001} facets. It is found from EPR spectra that adding zinc powder is an environment-friendly and effective strategy to introduce Ti^(3+) and oxygen vacancy(Ov) into the bulk of 3D hollow nanoboxes rather than the surface, which is responsible for their enhanced visible photocatalytic properties.The photocatalytic activity was evaluated by measuring the formation rate of hydroxide free radicals using 7-hydroxycoumarin as a probe. The sample prepared with zinc/TiOF_2 mass ratio of0.25 exhibited the highest RhB photodegradation activity under visible-light irradiation with a degradation rate of 96%, which is 4.0-times higher than that of pure TiO_2. The results suggest a novel approach to construct in-situ 3D hierarchical TiO_2 hollow nanoboxes doped with Ti^(3+) and Ov without introducing any impurity elements for superior visible-light photocatalytic activity.
基金Acknowledgements The authors greatly appreciate the financial support of the National Natural Science Foundation of China (Grant Nos. 21073084 and 20773065), the National Basic Research Program (973 Project) (Grant No. 2007CB936302) and the Modern Analysis Center of Nanjing University.
文摘Nitrogen-doped HTiNbO5 nanosheets have been successfully synthesized by first exfoliating layered HTiNbO5 in tetrabutylammonium hydroxide (TBAOH) to obtain HTiNbO5 nanosheets and then heating the nanosheets with urea. The resulting samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and N2 adsorption-desorption measurements. It was found that N-doping resulted in a much higher thermostability of the layered structure, intrinsic bandgap narrowing and a visible light response. The doped nitrogen atoms were mainly located in the interstitial sites of TiNbOs- lamellae and chemically bound to hydrogen ions. Compared with N-doped HTiNbOs, N-doped HTiNbO5 nanosheets had a much larger specific surface area and richer mesoporosity due to fee rather loose and irregular arrangement of fitanoniobate nanosheets. Both N-doped layered HTiNbOs and HTiNbO5 nanosheets showed a very high visible-light photocatalytic activity for the degradation of rhodamine B (RhB) aqueous solution. Moreover, due to the considerably larger surface area, richer mesoporosity and stronger acidity, N-doped HTiNbO5 nanosheets had an even higher activity than N-doped HTiNbOs, although the latter had a stronger absorption in the visible region. The dye molecules were mainly degraded to aliphatic organic compounds and partially mineralized to CO2 and/or CO, rather than being simply decolorized. The effect of photosensitization was insignificant and RhB was degraded mainly via the typical photocatalytic reaction routes. Two different reaction routes for the photodegradation of RhB under visible light irradiation over N-doped HTiNbO5 nanosheets have been proposed. The present method can be extended to a large number of layered metal oxides that have the characteristics of intercalation and exfoliation, thus providing new opportunities for the fabrication of highly effective and potentially practical visible-light photocatalysts.