Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3...Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.展开更多
High power and high-slope efficiency 650nm band real-refractive-index ridge w aveguide AlGaInP laser diodes with compressive strained MQW active layer are for med by pure Ar ion beam etching process.Symmetric laser me...High power and high-slope efficiency 650nm band real-refractive-index ridge w aveguide AlGaInP laser diodes with compressive strained MQW active layer are for med by pure Ar ion beam etching process.Symmetric laser mesas with high perpendi cularity,which are impossible to obtain by traditional wet etching method due to the use of a 15°-misoriented substrate,are obtained by this dry etching metho d.Laser diodes with 4μm wide,600μm long and 10%/90% coat are fabricated.Th e typical threshold current of these devices is 46mA at room temperature,and a s table fundamental-mode operation over 40mW is obtained.Very high slope efficien cy of 1.4W/A at 10mW and 1.1W/A at 40mW are realized.展开更多
A novel plasmonic photo‐Fenton catalyst of Ag/AgCl/Fe‐S was synthesized by ion exchange and photoreduction methods.The obtained catalyst was characterized by X‐ray diffraction,X‐ray photoelectron spectroscopy,scan...A novel plasmonic photo‐Fenton catalyst of Ag/AgCl/Fe‐S was synthesized by ion exchange and photoreduction methods.The obtained catalyst was characterized by X‐ray diffraction,X‐ray photoelectron spectroscopy,scanning electron microscope imaging,and Brunauer‐Emmett‐Teller measurements.Moreover,the photocatalytic activity of Ag/AgCl/Fe‐S was investigated for its degradation activity towards bisphenol A(BPA)as target pollutant under visible light irradiation.The effects of H2O2concentration,pH value,illumination intensity,and catalyst dosage on BPA degradation were examined.Our results indicated that the Ag/AgCl material was successfully loaded onto Fe‐sepiolite and showed a high photocatalytic activity under illumination by visible light.Furthermore,active species capture experiments were performed to explore the photocatalytic mechanism of the Ag/AgCl/Fe‐S in this heterogeneous photo‐Fenton process,where the major active species included hydroxyl radicals(?OH)and holes(h+).展开更多
On account of excellent thermal physical properties, molten nitrates/nitrites salt has been widely employed in heat transfer and thermal storage industry, especially in concentrated solar power system. The thermal sta...On account of excellent thermal physical properties, molten nitrates/nitrites salt has been widely employed in heat transfer and thermal storage industry, especially in concentrated solar power system. The thermal stability study of molten nitrate/nitrite salt is of great importance for this system, and the decomposition mechanism is the most complicated part of it. The oxide species O2^2- and O2^- were considered as intermediates in molten KNO3-NaNO3 while hard to been detected in high temperature molten salt due to their trace concentration and low stability. In this work, the homemade in situ high temperature UV- Vis instrument and a commercial electron paramagnetic resonance were utilized to supply evidence for the formation of superoxide during a slow decomposition process of heat transfer salt (HTS, 53 wt% KNO3/40 wt% NaNO2/7 wt% NaNO3). It is found that the superoxide is more easily generated from molten NaNO2 compared to NaNO3, and it has an absorption band at 420-440 nm in HTS which red shifts as temperature increases. The band is assigned to charge-transfer transition in NaO2 or KO2, responsible for the yellow color of the molten nitrate/nitrite salt. Furthermore, the UV absorption bands of molten NaNO2 and NANO3 are also obtained and compared with that of HTS.展开更多
Mesoporous FeVO4 nanorods were successfully synthesized by calcining the precursor Fe- VO4·1.1H2O nanorods, which were obtained via a simple hydrothermal method in the presence of a reactable metal-ion-containing...Mesoporous FeVO4 nanorods were successfully synthesized by calcining the precursor Fe- VO4·1.1H2O nanorods, which were obtained via a simple hydrothermal method in the presence of a reactable metal-ion-containing ionic liquid, 1-octyl-3-methylimidazolium tetrachloride ferrate(III)([Omim]FeCl4). The structure and morphology of the prepared samples were examined using various characterization techniques. During the synthetic process,[Omim]FeCl4 acted as the solvent, reactant, and capping agent simultaneously. Moreover, the porous FeVO4 nanorods as the heterogeneous photo-Fenton-like semiconductor catalyst for the degradation of tetracycline and rhodamine B under visible light irradiation exhibited excellent photocatalytic activity. This excellent photocatalytic activity of the porous FeVO4 nanorods can be attributed to the synergistic effect of their high electron-hole pair separation rate, suitable band gap structure, and large specific surface area. The possible photocatalytic degradation mechanism of FeVO4/H2O2 photocatalytic systems was also discussed in detail.展开更多
Ti^(3+) self-doped anatase three-dimensional(3D) TiO_2 hollow nanoboxes were synthesized via a topological transformation process involving template participation by a facile one-pot hydrothermal treatment with a...Ti^(3+) self-doped anatase three-dimensional(3D) TiO_2 hollow nanoboxes were synthesized via a topological transformation process involving template participation by a facile one-pot hydrothermal treatment with an ethanol solution of zinc powder and TiOF_2. It is worth noting that the 3D TiO_2 hollow nanoboxes are assembled from six single-crystal nanosheets and have dominant exposure of the {001} facets. It is found from EPR spectra that adding zinc powder is an environment-friendly and effective strategy to introduce Ti^(3+) and oxygen vacancy(Ov) into the bulk of 3D hollow nanoboxes rather than the surface, which is responsible for their enhanced visible photocatalytic properties.The photocatalytic activity was evaluated by measuring the formation rate of hydroxide free radicals using 7-hydroxycoumarin as a probe. The sample prepared with zinc/TiOF_2 mass ratio of0.25 exhibited the highest RhB photodegradation activity under visible-light irradiation with a degradation rate of 96%, which is 4.0-times higher than that of pure TiO_2. The results suggest a novel approach to construct in-situ 3D hierarchical TiO_2 hollow nanoboxes doped with Ti^(3+) and Ov without introducing any impurity elements for superior visible-light photocatalytic activity.展开更多
This work presents the visible-light photocatalytic selective oxidation of thiols to disulfides with molecular oxygen(O2) on anatase TiO2. The high specific surface area of anatase TiO2 proved to be especially critica...This work presents the visible-light photocatalytic selective oxidation of thiols to disulfides with molecular oxygen(O2) on anatase TiO2. The high specific surface area of anatase TiO2 proved to be especially critical in conferring high photocatalytic activity. Herein, surface complexation between thiol and TiO2 gives rise to photocatalytic activity under irradiation with 520 nm green light-emitting diodes(LEDs), resulting in excellent reaction activity, substrate scope, and functional group tolerance. The transformation was extremely efficient for the selective oxidation of various thiols, particularly with substrates bearing electron-withdrawing groups(reaction times of less than 10 min). To date, the longest wavelength of visible light that this system can utilize is 520 nm by the surface complex of substrate-TiO2. Importantly, O2 was found to act as the electron and proton acceptor, rather than to incorporate into the substrates. Our findings regarding this surface complex-based photocatalytic system can allow one to understand the interaction between the conduction band electrons and O2.展开更多
g-C3N4 is a hot visible light photocatalyst. However, the fast recombination of photogenerated electron- hole pairs leads to unsatisfactory photocatalytic efficiencies. In this study, Mg/O co-decorated amorphous carbo...g-C3N4 is a hot visible light photocatalyst. However, the fast recombination of photogenerated electron- hole pairs leads to unsatisfactory photocatalytic efficiencies. In this study, Mg/O co-decorated amorphous carbon nitride (labeled as MgO-CN) with a unique electronic structure was designed and prepared via a combined experimental and theoretical approach. The results showed that the MgO-CN exhibited an increased light absorption ability and promoted charge separation efficiency. The Mg and O co-decoration created a unique structure that could generate localized electrons around O atoms and enhance the reactant activation capacities via the C→O←Mg route. This could dramatically promote the O2 molecule activation on the catalyst surface to generate reactive species (?O2 –/?OH). The optimized MgO-CN exhibited a high photocatalytic activity for the degradation of tetracycline hydrochloride in water, which was five times higher than that of pristine g-C3N4. The present work could provide a new strategy for modifying the electronic structure of g-C3N4 and enhancing its performance for environmental applications.展开更多
Expanding the optical absorption range of photocatalysts is still a key endeavor in graphitic carbon nitride(g-C_(3)N_(4))studies.Here,we report on a novel thiophene group extending the optical property,which is assig...Expanding the optical absorption range of photocatalysts is still a key endeavor in graphitic carbon nitride(g-C_(3)N_(4))studies.Here,we report on a novel thiophene group extending the optical property,which is assigned to n-π^(*)electronic transitions involving the two lone pairs on sulfur(TLPS).The as-prepared samples,denoted as CN-ThAx(where x indicates the amount of ThA added,mg),showed an additional absorption above 500 nm as compared to pristine g-C_(3)N_(4).Further,the thiophene group enhanced charge carrier separation to suppress e‒/h+pair recombination.The experimental results suggest that the thiophene group can obstruct the polymerization of melem to generate a large plane,thus exposing the lone electron pairs on the sulfur.The photocatalytic activity was evaluated in the decomposition of bisphenol A and H2 evolution.Compared with g-C_(3)N_(4),the optimized CN-ThA_(30) sample led to a 6.6-and 2-fold enhancement of the degradation and H2 generation rates,respectively.The CN-ThA_(30) sample allowed for synchronous H2 production and BPA decomposition.展开更多
Adsorption of diehtyl dithiophosphate on chalcopyrite has been studied using UV-visible spectroscopy at pH values of 4, 6, and 9. It was found that the adsorption of diethyl dithiophosphate decreased with the increasi...Adsorption of diehtyl dithiophosphate on chalcopyrite has been studied using UV-visible spectroscopy at pH values of 4, 6, and 9. It was found that the adsorption of diethyl dithiophosphate decreased with the increasing pH treatments. The inhibition of diethyl dithiophosphate adsorption was found prominent in higher pH as a result of metal hydroxide species formation onto chalcopyrite surface. First order kinetic has been proposed and represented the adsorption mechanism. Flotation test using Hallimond tube has also been conducted and the results were consistent with the proposed mechanism. Furthermore, the morphological changes of the treated chalcopyrite were observed using Atomic Force Microscopy (AFM) showing the propensity of growth of islands, the new surfaces as products of the reaction. The hydrophobicity was measured in the form of force of adhesion. The results resembled with the approached mechanism.展开更多
The coordination nature of a number of substituted sodiumphenoxides to iron (Ⅲ) ion has been studied. The o-nitrosodiumphenoxide was found to have different coordination behaviour from that the sodium salts of sali...The coordination nature of a number of substituted sodiumphenoxides to iron (Ⅲ) ion has been studied. The o-nitrosodiumphenoxide was found to have different coordination behaviour from that the sodium salts of salicylic acid and methylsalicylate showed. The structure of the complexes, the number of the ligands being coordinated to the metal ion, has also been determined by titration, uv-vis spectroscopy, atomic absorption and the flame test. In addition, other sodium phenoxides were also involved in this study for comparison. An electric conductivity study on the resulting complexes was carried out and all complexes were found to be semiconductors.展开更多
Activated carbon/nanosized CdS/chitosan(AC/n-CdS/CS) composites as adsorbent and photoactive catalyst were prepared under low temperature(≤60 ℃) and ambient pressure.Methyl orange(MO) was chosen as a model pollutant...Activated carbon/nanosized CdS/chitosan(AC/n-CdS/CS) composites as adsorbent and photoactive catalyst were prepared under low temperature(≤60 ℃) and ambient pressure.Methyl orange(MO) was chosen as a model pollutant to evaluate synergistic effect of adsorption and photocatalytic decolorization by this innovative photocatalyst under visible light irradiation.Effects of various parameters such as catalyst amount,initial MO concentration,solution pH and reuse of catalyst on the decolorization of MO were investigated to optimize operational conditions.The decolorization of MO catalyzed by AC/n-CdS/CS fits the Langmuir-Hinshelwood kinetics model,and a surface reaction,where the dyes are absorbed,is the controlling step of the process.Decolorization efficiency of MO is improved with the increase in catalyst amount within a certain range.The photodecolorization of MO is more efficient in acidic media than alkaline media.The decolorization efficiency of MO is still higher than 84% after five cycles and 60 min under visible light irradiation,which confirms the reusability of AC/n-CdS/CS composite catalyst.展开更多
The photocatalytic reduction of CO2 with H2O to fuels and chemicals using solar energy is one of the most attractive but highly difficult routes.Thus far,only a very limited number of photocatalysts has been reported ...The photocatalytic reduction of CO2 with H2O to fuels and chemicals using solar energy is one of the most attractive but highly difficult routes.Thus far,only a very limited number of photocatalysts has been reported to be capable of catalyzing the photocatalytic reduction of CO2 under visible light.The utilization of the localized surface plasmon resonance(LSPR)phenomenon is an attractive strategy for developing visible-light photocatalysts.Herein,we have succeeded in synthesizing plasmonic MoO3?x-TiO2 nanocomposites with tunable LSPR by a simple solvothermal method.The well-structured nanocomposite containing two-dimensional(2D)molybdenum oxide(MoO3?x)nanosheets and one-dimensional(1D)titanium oxide nanotubes(TiO2-NT)showed LSPR absorption band in the visible-light region,and the incorporation of TiO2-NT significantly enhanced the LSPR absorption band.The MoO3?x-TiO2-NT nanocomposite is promising for application in the photocatalytic reduction of CO2 with H2O under visible light irradiation.展开更多
Alkali metal(Li, Na, K) doped ZnO powders were synthesized by solid-state reaction at different calcination temperatures and holding time. Effects of holding time and K sources on the infrared emissivity of ZnO were i...Alkali metal(Li, Na, K) doped ZnO powders were synthesized by solid-state reaction at different calcination temperatures and holding time. Effects of holding time and K sources on the infrared emissivity of ZnO were investigated. The structure and surface morphologies of samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The UV-Vis absorption and infrared emissivities were investigated by a UV-Vis spectrophotometer and an infrared emissometer, respectively. XRD patterns confirm the wurtzite structure of the as prepared samples with single phase. Smooth grain surfaces are detected in all doped ZnO samples, while ZnO:Li and ZnO:Na present the aggregation of grains. The redshifts in the optical band-gap are observed in K-, Na-, and Li-doped ZnO with the values 3.150, 3.144, and 3.142 eV. Due to better crystalline quality, ZnO:K shows a lower emissivity than others. The emissivity of K-doped ZnO decreases to the minimum value(0.804), at 1200 °C and holding 2 h. Compared with KNO3 as K source, K2CO3 doped ZnO has lower emissivities.展开更多
Carbonaceous catalysts are potential alternatives to metal catalysts. Graphene has been paid much attention for its high surface area and light weight. Here, hydrogenated graphene has been prepared by a simple gamma r...Carbonaceous catalysts are potential alternatives to metal catalysts. Graphene has been paid much attention for its high surface area and light weight. Here, hydrogenated graphene has been prepared by a simple gamma ray irradiation of graphene oxide aqueous suspension at room temperature. Transmission electron microscopic, element analysis, X-ray photoelectron spectroscopy, and UV-Vis spectrophotometer studies verified the hydrogenation of graphene. The as-prepared hydrogenated graphene can be used as a metal-free carbonaceous catalyst for the Fenton-like degradation of organic dye in water.展开更多
Three sulfonyl aliphatic amines [(R2SO2)2NR1, viz.: compound 1, in which RI=Me, and R2=Ph; compound 2, in which R1=n-Bu, and R2=CF3; and compound 3, in which RI=C8H17, and R2=CF3], have been synthesized and employe...Three sulfonyl aliphatic amines [(R2SO2)2NR1, viz.: compound 1, in which RI=Me, and R2=Ph; compound 2, in which R1=n-Bu, and R2=CF3; and compound 3, in which RI=C8H17, and R2=CF3], have been synthesized and employed as internal electron donors (IED) for the preparation of Ziegler-Natta catalysts for the polymerization of propylene. The contents of Ti, H and C in these catalysts have been determined by elemental analysis and UV-vis spectrophotometry. The effect of the structure and dosage of the electron donor, the A1/Ti ratio and the polymerization temperature on the catalyst performance has been studied. Under optimized conditions, the catalyst with a highest activity yielded polypropylene with high isotacticity in the absence of external electron donors.展开更多
基金supported by the National Natural Science Foundation of China(5147807051108487)the Science and Technology Project from Chongqing Education Commission(KJ1400617)~~
文摘Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.
文摘High power and high-slope efficiency 650nm band real-refractive-index ridge w aveguide AlGaInP laser diodes with compressive strained MQW active layer are for med by pure Ar ion beam etching process.Symmetric laser mesas with high perpendi cularity,which are impossible to obtain by traditional wet etching method due to the use of a 15°-misoriented substrate,are obtained by this dry etching metho d.Laser diodes with 4μm wide,600μm long and 10%/90% coat are fabricated.Th e typical threshold current of these devices is 46mA at room temperature,and a s table fundamental-mode operation over 40mW is obtained.Very high slope efficien cy of 1.4W/A at 10mW and 1.1W/A at 40mW are realized.
基金supported by the National Natural Science Foundation of China(41573118)Research Foundation of Education Bureau of Hunan Province,China(14B177)Special Project of Xiangtan University~~
文摘A novel plasmonic photo‐Fenton catalyst of Ag/AgCl/Fe‐S was synthesized by ion exchange and photoreduction methods.The obtained catalyst was characterized by X‐ray diffraction,X‐ray photoelectron spectroscopy,scanning electron microscope imaging,and Brunauer‐Emmett‐Teller measurements.Moreover,the photocatalytic activity of Ag/AgCl/Fe‐S was investigated for its degradation activity towards bisphenol A(BPA)as target pollutant under visible light irradiation.The effects of H2O2concentration,pH value,illumination intensity,and catalyst dosage on BPA degradation were examined.Our results indicated that the Ag/AgCl material was successfully loaded onto Fe‐sepiolite and showed a high photocatalytic activity under illumination by visible light.Furthermore,active species capture experiments were performed to explore the photocatalytic mechanism of the Ag/AgCl/Fe‐S in this heterogeneous photo‐Fenton process,where the major active species included hydroxyl radicals(?OH)and holes(h+).
基金This work was supported by the "Strategic Priority Research Program, TMSR" of the Chinese Academy of Sciences (No.XD02002400), the National Natural Science Foundation of China (No.51506214), the Hundred Talents Program, CAS and Shanghai Pujiang Program.
文摘On account of excellent thermal physical properties, molten nitrates/nitrites salt has been widely employed in heat transfer and thermal storage industry, especially in concentrated solar power system. The thermal stability study of molten nitrate/nitrite salt is of great importance for this system, and the decomposition mechanism is the most complicated part of it. The oxide species O2^2- and O2^- were considered as intermediates in molten KNO3-NaNO3 while hard to been detected in high temperature molten salt due to their trace concentration and low stability. In this work, the homemade in situ high temperature UV- Vis instrument and a commercial electron paramagnetic resonance were utilized to supply evidence for the formation of superoxide during a slow decomposition process of heat transfer salt (HTS, 53 wt% KNO3/40 wt% NaNO2/7 wt% NaNO3). It is found that the superoxide is more easily generated from molten NaNO2 compared to NaNO3, and it has an absorption band at 420-440 nm in HTS which red shifts as temperature increases. The band is assigned to charge-transfer transition in NaO2 or KO2, responsible for the yellow color of the molten nitrate/nitrite salt. Furthermore, the UV absorption bands of molten NaNO2 and NANO3 are also obtained and compared with that of HTS.
基金financially supported by the National Natural Science Foundation of China(21471069,21476098,and 21576123)Jiangsu University Scientific Research Funding(11JDG0146)~~
文摘Mesoporous FeVO4 nanorods were successfully synthesized by calcining the precursor Fe- VO4·1.1H2O nanorods, which were obtained via a simple hydrothermal method in the presence of a reactable metal-ion-containing ionic liquid, 1-octyl-3-methylimidazolium tetrachloride ferrate(III)([Omim]FeCl4). The structure and morphology of the prepared samples were examined using various characterization techniques. During the synthetic process,[Omim]FeCl4 acted as the solvent, reactant, and capping agent simultaneously. Moreover, the porous FeVO4 nanorods as the heterogeneous photo-Fenton-like semiconductor catalyst for the degradation of tetracycline and rhodamine B under visible light irradiation exhibited excellent photocatalytic activity. This excellent photocatalytic activity of the porous FeVO4 nanorods can be attributed to the synergistic effect of their high electron-hole pair separation rate, suitable band gap structure, and large specific surface area. The possible photocatalytic degradation mechanism of FeVO4/H2O2 photocatalytic systems was also discussed in detail.
基金supported by the National Natural Science Foundation of China(20702064,21177161,31402137)Hubei Province Science Fund for Distinguished Yong Scholars(2013CFA034)+2 种基金the Program for Excellent Talents in Hubei Province(RCJH15001)the Opening Project of Key Laboratory of Green Catalysis of Sichuan Institutes of High Education(LYZ1107)the Fundamental Research Funds for the Central University,South-Central University for Nationalities(CZP17077)~~
文摘Ti^(3+) self-doped anatase three-dimensional(3D) TiO_2 hollow nanoboxes were synthesized via a topological transformation process involving template participation by a facile one-pot hydrothermal treatment with an ethanol solution of zinc powder and TiOF_2. It is worth noting that the 3D TiO_2 hollow nanoboxes are assembled from six single-crystal nanosheets and have dominant exposure of the {001} facets. It is found from EPR spectra that adding zinc powder is an environment-friendly and effective strategy to introduce Ti^(3+) and oxygen vacancy(Ov) into the bulk of 3D hollow nanoboxes rather than the surface, which is responsible for their enhanced visible photocatalytic properties.The photocatalytic activity was evaluated by measuring the formation rate of hydroxide free radicals using 7-hydroxycoumarin as a probe. The sample prepared with zinc/TiOF_2 mass ratio of0.25 exhibited the highest RhB photodegradation activity under visible-light irradiation with a degradation rate of 96%, which is 4.0-times higher than that of pure TiO_2. The results suggest a novel approach to construct in-situ 3D hierarchical TiO_2 hollow nanoboxes doped with Ti^(3+) and Ov without introducing any impurity elements for superior visible-light photocatalytic activity.
文摘This work presents the visible-light photocatalytic selective oxidation of thiols to disulfides with molecular oxygen(O2) on anatase TiO2. The high specific surface area of anatase TiO2 proved to be especially critical in conferring high photocatalytic activity. Herein, surface complexation between thiol and TiO2 gives rise to photocatalytic activity under irradiation with 520 nm green light-emitting diodes(LEDs), resulting in excellent reaction activity, substrate scope, and functional group tolerance. The transformation was extremely efficient for the selective oxidation of various thiols, particularly with substrates bearing electron-withdrawing groups(reaction times of less than 10 min). To date, the longest wavelength of visible light that this system can utilize is 520 nm by the surface complex of substrate-TiO2. Importantly, O2 was found to act as the electron and proton acceptor, rather than to incorporate into the substrates. Our findings regarding this surface complex-based photocatalytic system can allow one to understand the interaction between the conduction band electrons and O2.
基金supported by the Specialized Innovation of Social and People’s Livelihood in Chongqing(cstc2016shmszx20012)Converting Outstanding Achievements of University-Funded Projects of Chongqing(KJZH17122)+3 种基金the National Natural Science Foundation of China(5160080705)the Key Laboratory Open Project from Chongqing Technology and Business University(1556036)Innovative Research Project from Chongqing Technology and Business University(yjscxx2016-060-34)the Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJ130704)~~
文摘g-C3N4 is a hot visible light photocatalyst. However, the fast recombination of photogenerated electron- hole pairs leads to unsatisfactory photocatalytic efficiencies. In this study, Mg/O co-decorated amorphous carbon nitride (labeled as MgO-CN) with a unique electronic structure was designed and prepared via a combined experimental and theoretical approach. The results showed that the MgO-CN exhibited an increased light absorption ability and promoted charge separation efficiency. The Mg and O co-decoration created a unique structure that could generate localized electrons around O atoms and enhance the reactant activation capacities via the C→O←Mg route. This could dramatically promote the O2 molecule activation on the catalyst surface to generate reactive species (?O2 –/?OH). The optimized MgO-CN exhibited a high photocatalytic activity for the degradation of tetracycline hydrochloride in water, which was five times higher than that of pristine g-C3N4. The present work could provide a new strategy for modifying the electronic structure of g-C3N4 and enhancing its performance for environmental applications.
文摘Expanding the optical absorption range of photocatalysts is still a key endeavor in graphitic carbon nitride(g-C_(3)N_(4))studies.Here,we report on a novel thiophene group extending the optical property,which is assigned to n-π^(*)electronic transitions involving the two lone pairs on sulfur(TLPS).The as-prepared samples,denoted as CN-ThAx(where x indicates the amount of ThA added,mg),showed an additional absorption above 500 nm as compared to pristine g-C_(3)N_(4).Further,the thiophene group enhanced charge carrier separation to suppress e‒/h+pair recombination.The experimental results suggest that the thiophene group can obstruct the polymerization of melem to generate a large plane,thus exposing the lone electron pairs on the sulfur.The photocatalytic activity was evaluated in the decomposition of bisphenol A and H2 evolution.Compared with g-C_(3)N_(4),the optimized CN-ThA_(30) sample led to a 6.6-and 2-fold enhancement of the degradation and H2 generation rates,respectively.The CN-ThA_(30) sample allowed for synchronous H2 production and BPA decomposition.
文摘Adsorption of diehtyl dithiophosphate on chalcopyrite has been studied using UV-visible spectroscopy at pH values of 4, 6, and 9. It was found that the adsorption of diethyl dithiophosphate decreased with the increasing pH treatments. The inhibition of diethyl dithiophosphate adsorption was found prominent in higher pH as a result of metal hydroxide species formation onto chalcopyrite surface. First order kinetic has been proposed and represented the adsorption mechanism. Flotation test using Hallimond tube has also been conducted and the results were consistent with the proposed mechanism. Furthermore, the morphological changes of the treated chalcopyrite were observed using Atomic Force Microscopy (AFM) showing the propensity of growth of islands, the new surfaces as products of the reaction. The hydrophobicity was measured in the form of force of adhesion. The results resembled with the approached mechanism.
文摘The coordination nature of a number of substituted sodiumphenoxides to iron (Ⅲ) ion has been studied. The o-nitrosodiumphenoxide was found to have different coordination behaviour from that the sodium salts of salicylic acid and methylsalicylate showed. The structure of the complexes, the number of the ligands being coordinated to the metal ion, has also been determined by titration, uv-vis spectroscopy, atomic absorption and the flame test. In addition, other sodium phenoxides were also involved in this study for comparison. An electric conductivity study on the resulting complexes was carried out and all complexes were found to be semiconductors.
基金Project(21007044) supported by the National Natural Science Foundation of ChinaProject(20050532009) supported by the Doctoral Foundation of Ministry of Education of China
文摘Activated carbon/nanosized CdS/chitosan(AC/n-CdS/CS) composites as adsorbent and photoactive catalyst were prepared under low temperature(≤60 ℃) and ambient pressure.Methyl orange(MO) was chosen as a model pollutant to evaluate synergistic effect of adsorption and photocatalytic decolorization by this innovative photocatalyst under visible light irradiation.Effects of various parameters such as catalyst amount,initial MO concentration,solution pH and reuse of catalyst on the decolorization of MO were investigated to optimize operational conditions.The decolorization of MO catalyzed by AC/n-CdS/CS fits the Langmuir-Hinshelwood kinetics model,and a surface reaction,where the dyes are absorbed,is the controlling step of the process.Decolorization efficiency of MO is improved with the increase in catalyst amount within a certain range.The photodecolorization of MO is more efficient in acidic media than alkaline media.The decolorization efficiency of MO is still higher than 84% after five cycles and 60 min under visible light irradiation,which confirms the reusability of AC/n-CdS/CS composite catalyst.
文摘The photocatalytic reduction of CO2 with H2O to fuels and chemicals using solar energy is one of the most attractive but highly difficult routes.Thus far,only a very limited number of photocatalysts has been reported to be capable of catalyzing the photocatalytic reduction of CO2 under visible light.The utilization of the localized surface plasmon resonance(LSPR)phenomenon is an attractive strategy for developing visible-light photocatalysts.Herein,we have succeeded in synthesizing plasmonic MoO3?x-TiO2 nanocomposites with tunable LSPR by a simple solvothermal method.The well-structured nanocomposite containing two-dimensional(2D)molybdenum oxide(MoO3?x)nanosheets and one-dimensional(1D)titanium oxide nanotubes(TiO2-NT)showed LSPR absorption band in the visible-light region,and the incorporation of TiO2-NT significantly enhanced the LSPR absorption band.The MoO3?x-TiO2-NT nanocomposite is promising for application in the photocatalytic reduction of CO2 with H2O under visible light irradiation.
基金Project(JB141405)supported by the Fundamental Research Funds for the Central Universities of China
文摘Alkali metal(Li, Na, K) doped ZnO powders were synthesized by solid-state reaction at different calcination temperatures and holding time. Effects of holding time and K sources on the infrared emissivity of ZnO were investigated. The structure and surface morphologies of samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The UV-Vis absorption and infrared emissivities were investigated by a UV-Vis spectrophotometer and an infrared emissometer, respectively. XRD patterns confirm the wurtzite structure of the as prepared samples with single phase. Smooth grain surfaces are detected in all doped ZnO samples, while ZnO:Li and ZnO:Na present the aggregation of grains. The redshifts in the optical band-gap are observed in K-, Na-, and Li-doped ZnO with the values 3.150, 3.144, and 3.142 eV. Due to better crystalline quality, ZnO:K shows a lower emissivity than others. The emissivity of K-doped ZnO decreases to the minimum value(0.804), at 1200 °C and holding 2 h. Compared with KNO3 as K source, K2CO3 doped ZnO has lower emissivities.
文摘Carbonaceous catalysts are potential alternatives to metal catalysts. Graphene has been paid much attention for its high surface area and light weight. Here, hydrogenated graphene has been prepared by a simple gamma ray irradiation of graphene oxide aqueous suspension at room temperature. Transmission electron microscopic, element analysis, X-ray photoelectron spectroscopy, and UV-Vis spectrophotometer studies verified the hydrogenation of graphene. The as-prepared hydrogenated graphene can be used as a metal-free carbonaceous catalyst for the Fenton-like degradation of organic dye in water.
基金the PetroChina for the financial support(Contract Number:08-07-01-20)
文摘Three sulfonyl aliphatic amines [(R2SO2)2NR1, viz.: compound 1, in which RI=Me, and R2=Ph; compound 2, in which R1=n-Bu, and R2=CF3; and compound 3, in which RI=C8H17, and R2=CF3], have been synthesized and employed as internal electron donors (IED) for the preparation of Ziegler-Natta catalysts for the polymerization of propylene. The contents of Ti, H and C in these catalysts have been determined by elemental analysis and UV-vis spectrophotometry. The effect of the structure and dosage of the electron donor, the A1/Ti ratio and the polymerization temperature on the catalyst performance has been studied. Under optimized conditions, the catalyst with a highest activity yielded polypropylene with high isotacticity in the absence of external electron donors.