Perylene tetracarboxylic diimide (PTCDI),widely used in organic photovoltaic devices,is an n-type semiconductor with strong absorption in the visible-light spectrum.There has been almost no study of the PTCDI-sensitiz...Perylene tetracarboxylic diimide (PTCDI),widely used in organic photovoltaic devices,is an n-type semiconductor with strong absorption in the visible-light spectrum.There has been almost no study of the PTCDI-sensitized TiO2 composite used to photocatalytically degrade pollutants.In this study,PTCDIand copper phthalocyanine tetrasulfonic acid (CuPcTs)-sensitized TiO2 composites were prepared using a hydrothermal method.The morphologies and structures of the two composites were characterized by X-ray diffraction,transmission electron microscopy,ultraviolet-visible spectroscopy,and fluorescence spectroscopy.The visible-light photocatalytic activities of the composites were evaluated using the degradation of rhodamine B as a model reaction.Results showed that dye-sensitized TiO2 samples had a wider absorption spectrum range and higher visiblelight photocatalytic activity compared to TiO2 samples.The double dye-sensitized (or co-sensitized) TiO2 composite with efficient electron collection exhibited higher photocatalytic activity than did the single dye-sensitized TiO2 composite.The electron transfer processes of single and double dye-sensitized TiO2 composites were illustrated according to band theory.展开更多
基金supported by the National Natural Science Foundation of China (20407002)National Basic Research Program of China (2002CB410802)Special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control
文摘Perylene tetracarboxylic diimide (PTCDI),widely used in organic photovoltaic devices,is an n-type semiconductor with strong absorption in the visible-light spectrum.There has been almost no study of the PTCDI-sensitized TiO2 composite used to photocatalytically degrade pollutants.In this study,PTCDIand copper phthalocyanine tetrasulfonic acid (CuPcTs)-sensitized TiO2 composites were prepared using a hydrothermal method.The morphologies and structures of the two composites were characterized by X-ray diffraction,transmission electron microscopy,ultraviolet-visible spectroscopy,and fluorescence spectroscopy.The visible-light photocatalytic activities of the composites were evaluated using the degradation of rhodamine B as a model reaction.Results showed that dye-sensitized TiO2 samples had a wider absorption spectrum range and higher visiblelight photocatalytic activity compared to TiO2 samples.The double dye-sensitized (or co-sensitized) TiO2 composite with efficient electron collection exhibited higher photocatalytic activity than did the single dye-sensitized TiO2 composite.The electron transfer processes of single and double dye-sensitized TiO2 composites were illustrated according to band theory.