随着复杂储层地震资料特征筛选的机器学习技术的进步,如何有效地对参与地震属性优选和储层反演的地震样本进行采集和分析,成为目前智能地震预测领域的一个研究热点。目前的方法多着重于模型分类算法的改进,在标签的制作和采集方面不仅...随着复杂储层地震资料特征筛选的机器学习技术的进步,如何有效地对参与地震属性优选和储层反演的地震样本进行采集和分析,成为目前智能地震预测领域的一个研究热点。目前的方法多着重于模型分类算法的改进,在标签的制作和采集方面不仅耗费大量时间进行人工标注,还存在标签不平衡情况下类内可靠性、类间平衡性不强等问题。为此,提出基于稀疏强特征提取的三维地震数据完备方法。首先,基于多数决原则的样本分割(Sample Segmentation Based on Majority Rule,SSMR)寻迹多尺度、多标签三维地震样本,进行采集、自动标注;然后,改进标签洗牌平衡方法(Improved Label Shuffling Balance Method,ILSB),通过“2+1”的样本增广平衡策略进行数据完备处理,改善样本采样不平衡性导致的模型训练偏向性;最后,利用基于最小L_(1)范数稀疏表示对奇异值分解结果进行强特征提取(Minimum L_(1)-norm Based Sparse Representation for Feature Extraction,L_(1)-SRFE)和可视化表示。实际资料应用表明,实钻井与验证井预测结果吻合度高,该方法具有较高的标签分类准确率。展开更多
In this paper, we designed a color visualization model for sparse representation of the whole hyperspectral image, in which, not only the spectral information in the sparse representation but also the spatial informat...In this paper, we designed a color visualization model for sparse representation of the whole hyperspectral image, in which, not only the spectral information in the sparse representation but also the spatial information of the whole image is retained. After the sparse representation, the color labels of the effective elements of the sparse coding dictionary are selected according to the sparse coefficient and then the mixed images are displayed. The generated images maintain spectral distance preservation and have good separability. For local ground objects, the proposed single-pixel mixed array and improved oriented sliver textures methods are integrated to display the specific composition of each pixel. This avoids the confusion of the color presentation in the mixed-pixel color display and can also be used to reconstruct the original hyperspectral data. Finally, the model effectiveness was proved using real data. This method is promising and can find use in many fields, such as energy exploration, environmental monitoring, disaster warning, and so on.展开更多
文摘随着复杂储层地震资料特征筛选的机器学习技术的进步,如何有效地对参与地震属性优选和储层反演的地震样本进行采集和分析,成为目前智能地震预测领域的一个研究热点。目前的方法多着重于模型分类算法的改进,在标签的制作和采集方面不仅耗费大量时间进行人工标注,还存在标签不平衡情况下类内可靠性、类间平衡性不强等问题。为此,提出基于稀疏强特征提取的三维地震数据完备方法。首先,基于多数决原则的样本分割(Sample Segmentation Based on Majority Rule,SSMR)寻迹多尺度、多标签三维地震样本,进行采集、自动标注;然后,改进标签洗牌平衡方法(Improved Label Shuffling Balance Method,ILSB),通过“2+1”的样本增广平衡策略进行数据完备处理,改善样本采样不平衡性导致的模型训练偏向性;最后,利用基于最小L_(1)范数稀疏表示对奇异值分解结果进行强特征提取(Minimum L_(1)-norm Based Sparse Representation for Feature Extraction,L_(1)-SRFE)和可视化表示。实际资料应用表明,实钻井与验证井预测结果吻合度高,该方法具有较高的标签分类准确率。
基金supported by the National Natural Science Foundation of China (Grant No.61275010,61077079)the State Key Program of National Natural Science Foundation of Heilongjiang Province of China (No.ZD201216)the Fundamental Research Funds for the Central Universities (No.HEUCF130820)
文摘In this paper, we designed a color visualization model for sparse representation of the whole hyperspectral image, in which, not only the spectral information in the sparse representation but also the spatial information of the whole image is retained. After the sparse representation, the color labels of the effective elements of the sparse coding dictionary are selected according to the sparse coefficient and then the mixed images are displayed. The generated images maintain spectral distance preservation and have good separability. For local ground objects, the proposed single-pixel mixed array and improved oriented sliver textures methods are integrated to display the specific composition of each pixel. This avoids the confusion of the color presentation in the mixed-pixel color display and can also be used to reconstruct the original hyperspectral data. Finally, the model effectiveness was proved using real data. This method is promising and can find use in many fields, such as energy exploration, environmental monitoring, disaster warning, and so on.