Aimed at the CMS laser scanning theory and characteristic, a combined actual situation of stope N4-5 of Fankou Lead-Zinc Mine and complementary monitoring of the stope were carried out by carefully choos- ing two meas...Aimed at the CMS laser scanning theory and characteristic, a combined actual situation of stope N4-5 of Fankou Lead-Zinc Mine and complementary monitoring of the stope were carried out by carefully choos- ing two measuring points. The cavity 3D visible model was created by large-scale mining industry soft- ware Surpac after changing the measured data. The stope mine design model, bottom structural model and backfill model of the south and north sides of the stope N4-5 were established according to the stope design data. On this basis, the stope block model was established, and then block attribute was estimated. The amount the ore remains, mullock, backfill and total mined ore were calculated through the solid model restrains. Finally, the stope mining dilution rate and loss rate reached 8.2% and 1.47%, respectively. The practice indicates that the mining index visible calculation method based on cavity 3D monitoring and stope block modeling can make up the deficiency of adopting the solid model to directly carry out the Boolean operation, The stope mining indexes obtained by this method are accurate and reliable, and can be used to guide the actual nroduction management and estimate the mining aualitv.展开更多
本课题综合应用4D-CAB、工程数据库、人工智能、虚拟现实技术,研究开发建筑工程项目4D施工管理系统——4D-GCPSU(4D Management for Construction Planning and Resource Utilization)。该系统通过建立建筑物及其施工场地布置3D模型...本课题综合应用4D-CAB、工程数据库、人工智能、虚拟现实技术,研究开发建筑工程项目4D施工管理系统——4D-GCPSU(4D Management for Construction Planning and Resource Utilization)。该系统通过建立建筑物及其施工场地布置3D模型与工程进度计划的链接和相关资源属性的集成,形成4D++施工模型(4DSMM++),实现了建筑工程项目的工程进度、施工资源和场地布置的动态管理,以厦整个施工过程的可视化模拟,为提高施工水平、确保工程质量,提供了科学,有效的管理手段。展开更多
In the present study, firstly, the unsteady cavitating flows around a hydrofoil are studied based on the flow visualization and detail velocity measurement, a high-speed video camera is used to visualize the flow stru...In the present study, firstly, the unsteady cavitating flows around a hydrofoil are studied based on the flow visualization and detail velocity measurement, a high-speed video camera is used to visualize the flow structures, and a particle image velocimetry (PIV) technique is applied to the measurement of the time-averaged and instantaneous velocity and vorticity fields. The results show that the unsteadiness of mass transfer process between the vapor and the two-phase regions is substantial, a self-oscillatory behavior of the whole sheet cavitation is obtained, with large length fluctuations and vapor cloud shedding, and also the cavitation structure depends on the interaction of the water-vapor mixture and the periodic vortex shedding. The main purpose of this experimental study is to offer information for validating computational models, and shed light on the unsteady multiphase transport process of cavitating flows. Furthermore, with an emphasis on the dynamics of the attached turbulent cavitating flows, a filter-based model (FBM) is derived from the k-6 two-equation model, a conditional averaging method aimed at improving unsteady simulation is applied to computation. In comparison to the standard k-ε model, overall, the filter-based model is shown to improve the predictive capability considerably.展开更多
基金Financial support for this work was provided by the Frontier Research Plan Key Program of Central South University (No.2010QZZ001)the Open Projects of State Key Laboratory of CoalResources and Mine Safety, CUMT (No. 11KF02)
文摘Aimed at the CMS laser scanning theory and characteristic, a combined actual situation of stope N4-5 of Fankou Lead-Zinc Mine and complementary monitoring of the stope were carried out by carefully choos- ing two measuring points. The cavity 3D visible model was created by large-scale mining industry soft- ware Surpac after changing the measured data. The stope mine design model, bottom structural model and backfill model of the south and north sides of the stope N4-5 were established according to the stope design data. On this basis, the stope block model was established, and then block attribute was estimated. The amount the ore remains, mullock, backfill and total mined ore were calculated through the solid model restrains. Finally, the stope mining dilution rate and loss rate reached 8.2% and 1.47%, respectively. The practice indicates that the mining index visible calculation method based on cavity 3D monitoring and stope block modeling can make up the deficiency of adopting the solid model to directly carry out the Boolean operation, The stope mining indexes obtained by this method are accurate and reliable, and can be used to guide the actual nroduction management and estimate the mining aualitv.
文摘本课题综合应用4D-CAB、工程数据库、人工智能、虚拟现实技术,研究开发建筑工程项目4D施工管理系统——4D-GCPSU(4D Management for Construction Planning and Resource Utilization)。该系统通过建立建筑物及其施工场地布置3D模型与工程进度计划的链接和相关资源属性的集成,形成4D++施工模型(4DSMM++),实现了建筑工程项目的工程进度、施工资源和场地布置的动态管理,以厦整个施工过程的可视化模拟,为提高施工水平、确保工程质量,提供了科学,有效的管理手段。
基金supported by the National Natural Science Foundation of China (Grant Nos. 50679001 and 50979004)
文摘In the present study, firstly, the unsteady cavitating flows around a hydrofoil are studied based on the flow visualization and detail velocity measurement, a high-speed video camera is used to visualize the flow structures, and a particle image velocimetry (PIV) technique is applied to the measurement of the time-averaged and instantaneous velocity and vorticity fields. The results show that the unsteadiness of mass transfer process between the vapor and the two-phase regions is substantial, a self-oscillatory behavior of the whole sheet cavitation is obtained, with large length fluctuations and vapor cloud shedding, and also the cavitation structure depends on the interaction of the water-vapor mixture and the periodic vortex shedding. The main purpose of this experimental study is to offer information for validating computational models, and shed light on the unsteady multiphase transport process of cavitating flows. Furthermore, with an emphasis on the dynamics of the attached turbulent cavitating flows, a filter-based model (FBM) is derived from the k-6 two-equation model, a conditional averaging method aimed at improving unsteady simulation is applied to computation. In comparison to the standard k-ε model, overall, the filter-based model is shown to improve the predictive capability considerably.