对湖泊总磷的变化预测和来源识别对水资源调度和流域生态治理有着重要的意义,然而复杂的生化反应和水动力条件导致的非平稳性给湖泊总磷浓度的准确预测带来极大的困难。为克服这一挑战,本文引入了基于加权回归的季节趋势分解(seasonal a...对湖泊总磷的变化预测和来源识别对水资源调度和流域生态治理有着重要的意义,然而复杂的生化反应和水动力条件导致的非平稳性给湖泊总磷浓度的准确预测带来极大的困难。为克服这一挑战,本文引入了基于加权回归的季节趋势分解(seasonal and trend decomposition using Loess,STL)技术和夏普利加法(SHapley additive exPlanations,SHAP)结合长短期记忆网络(long short-term memory neural network,LSTM)和门控循环单元(gated recurrent unit,GRU)构建了一个可解释的预测框架,以增强对湖泊总磷浓度演变的预测并提高其可解释性。研究表明:(1)在骆马湖总磷浓度的预测中,该框架拥有较好的预报精度(R^(2)=0.878),优于LSTM和卷积长短期记忆模型(convolutional neural networks and long short term memory network,CNN-LSTM)。当预测时间步长增加到8 h时,该框架有效提高了总磷浓度的预测精度,平均相对误差和均方根误差分别降低了47.1%和33.3%。从预测趋势来看,骆马湖在汛期的总磷平均浓度为0.158 mg/L,相较于非汛期的平均浓度,增加了202.1%。(2)运河来水是骆马湖总磷浓度最重要的影响因素,贡献权重为60.0%,并且不同断面(三湾、三场)的污染源受水动力、气象等因素的影响存在显著的时空差异。本文凸显了神经网络模型在预警水体污染方面的可实施性,并且为提高传统神经网络的学习能力和可解释性的开发与验证提供了重要方向。展开更多
近年来,深度神经网络(deep neural network,DNN)在众多领域取得了广泛应用,甚至在安全关键系统中已经可以代替人类作出决策,如自动驾驶和智慧医疗等,这对DNN的可靠性提出了更高的要求.由于DNN具有复杂的多层非线性网络结构,难以理解其...近年来,深度神经网络(deep neural network,DNN)在众多领域取得了广泛应用,甚至在安全关键系统中已经可以代替人类作出决策,如自动驾驶和智慧医疗等,这对DNN的可靠性提出了更高的要求.由于DNN具有复杂的多层非线性网络结构,难以理解其内部预测机制,也很难对其进行调试.现有的DNN调试工作主要通过修改DNN的参数和扩增数据集提升DNN性能,以达到优化的目的.然而直接调整参数难以控制修改的幅度,甚至使模型失去对训练数据的拟合能力;而无指导地扩增训练数据则会大幅增加训练成本.针对此问题,提出了一种基于可解释性分析的DNN优化方法(optimizing DNN based on interpretability analysis,OptDIA).对DNN的训练过程及决策行为进行解释分析,根据解释分析结果,将原始数据中对DNN决策行为产生不同程度影响的部分以不同概率进行数据变换以生成新训练数据,并重训练DNN,以提升模型性能达到优化DNN的目的.在使用3个数据集训练的9个DNN模型上的实验结果表明,OptDIA可以将DNN的准确率提升0.39~2.15个百分点,F1-score提升0.11~2.03个百分点.展开更多
界面面积浓度(Interfacial Area Concentration,IAC)是两相流动的封闭两流体模型中界面传递项的关键参数,用于表征气液界面传输能力的强弱。对界面面积浓度的建模预测通常有经验关联式和界面面积输运方程等方法,但这些方法都有较大的数...界面面积浓度(Interfacial Area Concentration,IAC)是两相流动的封闭两流体模型中界面传递项的关键参数,用于表征气液界面传输能力的强弱。对界面面积浓度的建模预测通常有经验关联式和界面面积输运方程等方法,但这些方法都有较大的数据依赖性。而对神经网络模型增添可解释性可以为模型修正提供方向,严谨提升预测精度。为更好地预测两相流动的IAC,基于神经网络建立了IAC的预测模型,结合不同气泡行为、物理关系及统计分布并利用事后可解释性方法,对比分析了不同输入特征组合的神经网络模型预测能力;并通过神经网络每层的结构参数大小,分析输出比重挑选合适的数据预处理方法。通过事后可解释性分析得到空泡份额是IAC预测的重要因素,而对训练数据进行对数变换预处理能够显著提高模型对真实数据的预测能力。展开更多
文摘纵向联邦学习(vertical federated learning,VFL)常用于高风险场景中的跨领域数据共享,用户需要理解并信任模型决策以推动模型应用。现有研究主要关注VFL中可解释性与隐私之间的权衡,未充分满足用户对模型建立信任及调优的需求。为此,提出了一种基于人在回路(human-in-the-loop,HITL)的纵向联邦学习解释方法(explainable vertical federated learning based on human-in-the-loop,XVFL-HITL),通过构建分布式HITL结构将用户反馈纳入VFL的基于Shapley值的解释方法中,利用各参与方的知识校正训练数据来提高模型性能。进一步,考虑到隐私问题,基于Shapley值的可加性原理,将非当前参与方的特征贡献值整合为一个整体展示,从而有效保护了各参与方的特征隐私。实验结果表明,在基准数据上,XVFL-HITL的解释结果具有有效性,并保护了用户的特征隐私;同时,XVFL-HITL对比VFL-Random和直接使用SHAP的VFL-Shapley进行特征选择的方法,模型准确率分别提高了约14%和11%。
文摘对湖泊总磷的变化预测和来源识别对水资源调度和流域生态治理有着重要的意义,然而复杂的生化反应和水动力条件导致的非平稳性给湖泊总磷浓度的准确预测带来极大的困难。为克服这一挑战,本文引入了基于加权回归的季节趋势分解(seasonal and trend decomposition using Loess,STL)技术和夏普利加法(SHapley additive exPlanations,SHAP)结合长短期记忆网络(long short-term memory neural network,LSTM)和门控循环单元(gated recurrent unit,GRU)构建了一个可解释的预测框架,以增强对湖泊总磷浓度演变的预测并提高其可解释性。研究表明:(1)在骆马湖总磷浓度的预测中,该框架拥有较好的预报精度(R^(2)=0.878),优于LSTM和卷积长短期记忆模型(convolutional neural networks and long short term memory network,CNN-LSTM)。当预测时间步长增加到8 h时,该框架有效提高了总磷浓度的预测精度,平均相对误差和均方根误差分别降低了47.1%和33.3%。从预测趋势来看,骆马湖在汛期的总磷平均浓度为0.158 mg/L,相较于非汛期的平均浓度,增加了202.1%。(2)运河来水是骆马湖总磷浓度最重要的影响因素,贡献权重为60.0%,并且不同断面(三湾、三场)的污染源受水动力、气象等因素的影响存在显著的时空差异。本文凸显了神经网络模型在预警水体污染方面的可实施性,并且为提高传统神经网络的学习能力和可解释性的开发与验证提供了重要方向。
文摘近年来,深度神经网络(deep neural network,DNN)在众多领域取得了广泛应用,甚至在安全关键系统中已经可以代替人类作出决策,如自动驾驶和智慧医疗等,这对DNN的可靠性提出了更高的要求.由于DNN具有复杂的多层非线性网络结构,难以理解其内部预测机制,也很难对其进行调试.现有的DNN调试工作主要通过修改DNN的参数和扩增数据集提升DNN性能,以达到优化的目的.然而直接调整参数难以控制修改的幅度,甚至使模型失去对训练数据的拟合能力;而无指导地扩增训练数据则会大幅增加训练成本.针对此问题,提出了一种基于可解释性分析的DNN优化方法(optimizing DNN based on interpretability analysis,OptDIA).对DNN的训练过程及决策行为进行解释分析,根据解释分析结果,将原始数据中对DNN决策行为产生不同程度影响的部分以不同概率进行数据变换以生成新训练数据,并重训练DNN,以提升模型性能达到优化DNN的目的.在使用3个数据集训练的9个DNN模型上的实验结果表明,OptDIA可以将DNN的准确率提升0.39~2.15个百分点,F1-score提升0.11~2.03个百分点.
文摘界面面积浓度(Interfacial Area Concentration,IAC)是两相流动的封闭两流体模型中界面传递项的关键参数,用于表征气液界面传输能力的强弱。对界面面积浓度的建模预测通常有经验关联式和界面面积输运方程等方法,但这些方法都有较大的数据依赖性。而对神经网络模型增添可解释性可以为模型修正提供方向,严谨提升预测精度。为更好地预测两相流动的IAC,基于神经网络建立了IAC的预测模型,结合不同气泡行为、物理关系及统计分布并利用事后可解释性方法,对比分析了不同输入特征组合的神经网络模型预测能力;并通过神经网络每层的结构参数大小,分析输出比重挑选合适的数据预处理方法。通过事后可解释性分析得到空泡份额是IAC预测的重要因素,而对训练数据进行对数变换预处理能够显著提高模型对真实数据的预测能力。