推导了交流电网不平衡情况下电压源换相高压直流输电系统(voltage source converter based high voltage direct current transmission,VSC-HVDC)电磁暂态模型,提出了适用于该场合的抑制直流电压二次波动的控制策略。通过分析αβ坐标与...推导了交流电网不平衡情况下电压源换相高压直流输电系统(voltage source converter based high voltage direct current transmission,VSC-HVDC)电磁暂态模型,提出了适用于该场合的抑制直流电压二次波动的控制策略。通过分析αβ坐标与dq+和dq-坐标之间的变换关系,得出结论:在正序旋转坐标下正序分量为直流量,负序分量是频率为100Hz的交流量;而在负序旋转坐标下负序分量为直流量,正序分量是频率为100Hz的交流量。通过简化交、直流侧电路,建立考虑换相电抗器损耗的交流系统不平衡情况下VSC-HVDC系统电磁暂态数学模型。为了抑制发生不平衡故障时直流电压的二次波动给VSC阀和直流电容器产生额外应力等问题,设计基于正、负序旋转坐标系的双电流内环控制器和直流电压外环控制器。仿真结果证明所提出的数学模型正确、可靠,所提出的控制策略能够有效地抑制直流电压二次波动。展开更多
文摘推导了交流电网不平衡情况下电压源换相高压直流输电系统(voltage source converter based high voltage direct current transmission,VSC-HVDC)电磁暂态模型,提出了适用于该场合的抑制直流电压二次波动的控制策略。通过分析αβ坐标与dq+和dq-坐标之间的变换关系,得出结论:在正序旋转坐标下正序分量为直流量,负序分量是频率为100Hz的交流量;而在负序旋转坐标下负序分量为直流量,正序分量是频率为100Hz的交流量。通过简化交、直流侧电路,建立考虑换相电抗器损耗的交流系统不平衡情况下VSC-HVDC系统电磁暂态数学模型。为了抑制发生不平衡故障时直流电压的二次波动给VSC阀和直流电容器产生额外应力等问题,设计基于正、负序旋转坐标系的双电流内环控制器和直流电压外环控制器。仿真结果证明所提出的数学模型正确、可靠,所提出的控制策略能够有效地抑制直流电压二次波动。