By means of both a theory for pressure-induced shifts (PS) of energy spectra and a theory for shifts of energy spectra due to electron-phonon interaction (EPI), the 'pure electronic' PS and the PS due to EPI o...By means of both a theory for pressure-induced shifts (PS) of energy spectra and a theory for shifts of energy spectra due to electron-phonon interaction (EPI), the 'pure electronic' PS and the PS due to EPI of R<SUB>1</SUB> line of GSGG:Cr<SUP>3+</SUP> at 70 K have been calculated, respectively. Their physical origins have been revealed. It is found that the admixture of and base-wavefunctions in the wavefunctions of R<SUB>1</SUB> level of GSGG:Cr<SUP>3+</SUP> at 70 K is remarkable under the normal pressure, and the degree of the admixture rapidly decreases with increasing pressure. The change of the degree of the admixture with the pressure plays a key role for not only the pure electronic PS of R<SUB>1</SUB> line but also the PS of R<SUB>1</SUB> line due to EPI. The detailed calculations and analyses show that the pressure-dependent behaviors of the pure electronic PS of R<SUB>1</SUB> line and the PS of R<SUB>1</SUB> line due to EPI are quite different. It is the combined effect of them that gives rise to the total PS of R<SUB>1</SUB> line, which has satisfactorily explained the experimental data (including a reversal of PS of R<SUB>1</SUB> line). In contributions to PS of R<SUB>1</SUB> line due to EPI at 70 K, the temperature-independent contribution is much larger than the temperature-dependent contribution. The former results from the interaction between the zero-point vibration of the lattice and localized electronic state.展开更多
Fault diagnosis of rotating machinery is of great importance to the high quality products and long-term safe operation.However,the useful weak features are usually corrupted by strong background noise,thus increasing ...Fault diagnosis of rotating machinery is of great importance to the high quality products and long-term safe operation.However,the useful weak features are usually corrupted by strong background noise,thus increasing the difficulty of the feature extraction.Thereby,a novel denoising method based on the tunable Q-factor wavelet transform(TQWT)using neighboring coefficients is proposed in this article.The emerging TQWT possesses excellent properties compared with the conventional constant-Q wavelet transforms,which can tune Q-factor according to the oscillatory behavior of the signal.Meanwhile,neighboring coefficients denoising is adopted to avoid the overkill of conventional term-by-term thresholding techniques.Because of having the combined advantages of the two methods,the presented denoising method is more practical and effective than other methods.The proposed method is applied to a simulated signal,a rolling element bearing with an outer race defect from antenna transmission chain and a gearbox fault detection case.The processing results demonstrate that the proposed method can successfully identify the fault features,showing that this method is more effective than the conventional wavelet thresholding denoising methods,term-by-term TQWT denoising schemes and spectral kurtosis.展开更多
文摘By means of both a theory for pressure-induced shifts (PS) of energy spectra and a theory for shifts of energy spectra due to electron-phonon interaction (EPI), the 'pure electronic' PS and the PS due to EPI of R<SUB>1</SUB> line of GSGG:Cr<SUP>3+</SUP> at 70 K have been calculated, respectively. Their physical origins have been revealed. It is found that the admixture of and base-wavefunctions in the wavefunctions of R<SUB>1</SUB> level of GSGG:Cr<SUP>3+</SUP> at 70 K is remarkable under the normal pressure, and the degree of the admixture rapidly decreases with increasing pressure. The change of the degree of the admixture with the pressure plays a key role for not only the pure electronic PS of R<SUB>1</SUB> line but also the PS of R<SUB>1</SUB> line due to EPI. The detailed calculations and analyses show that the pressure-dependent behaviors of the pure electronic PS of R<SUB>1</SUB> line and the PS of R<SUB>1</SUB> line due to EPI are quite different. It is the combined effect of them that gives rise to the total PS of R<SUB>1</SUB> line, which has satisfactorily explained the experimental data (including a reversal of PS of R<SUB>1</SUB> line). In contributions to PS of R<SUB>1</SUB> line due to EPI at 70 K, the temperature-independent contribution is much larger than the temperature-dependent contribution. The former results from the interaction between the zero-point vibration of the lattice and localized electronic state.
基金supported by the National Natural Science Foundation of China (Grant No. 51275384)the Key Project of National Natural Science Foundation of China (Grant No. 51035007)+1 种基金the Important National Science and Technology Specific Projects (Grant No. 2010ZX04014-016)the National Basic Research Program of China ("973" Program) (Grant No. 2009CB724405)
文摘Fault diagnosis of rotating machinery is of great importance to the high quality products and long-term safe operation.However,the useful weak features are usually corrupted by strong background noise,thus increasing the difficulty of the feature extraction.Thereby,a novel denoising method based on the tunable Q-factor wavelet transform(TQWT)using neighboring coefficients is proposed in this article.The emerging TQWT possesses excellent properties compared with the conventional constant-Q wavelet transforms,which can tune Q-factor according to the oscillatory behavior of the signal.Meanwhile,neighboring coefficients denoising is adopted to avoid the overkill of conventional term-by-term thresholding techniques.Because of having the combined advantages of the two methods,the presented denoising method is more practical and effective than other methods.The proposed method is applied to a simulated signal,a rolling element bearing with an outer race defect from antenna transmission chain and a gearbox fault detection case.The processing results demonstrate that the proposed method can successfully identify the fault features,showing that this method is more effective than the conventional wavelet thresholding denoising methods,term-by-term TQWT denoising schemes and spectral kurtosis.