本文讨论紧致度量空间 X 上的链可迁自映射 f,主要证明了:1.f 不是链可迁的充要条件是存在非空开集 U,使(?)X 且 f((?))(?)U。2.若满射 f 的ω极限集含于 f 的一个链分支(链混合分支)之中,则 f 在 X 上是链可迁(链混合)的。3.若 X=S^1或...本文讨论紧致度量空间 X 上的链可迁自映射 f,主要证明了:1.f 不是链可迁的充要条件是存在非空开集 U,使(?)X 且 f((?))(?)U。2.若满射 f 的ω极限集含于 f 的一个链分支(链混合分支)之中,则 f 在 X 上是链可迁(链混合)的。3.若 X=S^1或 I(=[0,1]),f 是链可迁的且具有伪轨道跟踪性质,则 f 敏感依赖于初始条件且在 X 上的强混沌的。4.若X=S^1或 I 且 f 为满射,如 Γ((f)=(?)(ω(x,f)∩α(x,f))含于 f 的一个链分支(链混合分支)之中,则 f 在 X 上是链可迁(链混合)的,若Γ(f)连通,则 f 在 X 上链混合的。展开更多
文摘本文讨论紧致度量空间 X 上的链可迁自映射 f,主要证明了:1.f 不是链可迁的充要条件是存在非空开集 U,使(?)X 且 f((?))(?)U。2.若满射 f 的ω极限集含于 f 的一个链分支(链混合分支)之中,则 f 在 X 上是链可迁(链混合)的。3.若 X=S^1或 I(=[0,1]),f 是链可迁的且具有伪轨道跟踪性质,则 f 敏感依赖于初始条件且在 X 上的强混沌的。4.若X=S^1或 I 且 f 为满射,如 Γ((f)=(?)(ω(x,f)∩α(x,f))含于 f 的一个链分支(链混合分支)之中,则 f 在 X 上是链可迁(链混合)的,若Γ(f)连通,则 f 在 X 上链混合的。