To realize highly selective relay recognition of Fe3+ and H2PO4^- ions, a simple benzimidazole-based fluorescent chemosensor (L) was designed and synthesized. Sensor L displays rapid, highly selective, and sensitiv...To realize highly selective relay recognition of Fe3+ and H2PO4^- ions, a simple benzimidazole-based fluorescent chemosensor (L) was designed and synthesized. Sensor L displays rapid, highly selective, and sensitive recognition to Fe^3+ in H2O/DMSO (1:1, v/v) solutions. The in stitu-generated L-Fe^3+ complex solution exhibits a fast response and high selectivity toward dihydrogen phosphate anion via the Fe^3+ displacement approach. The detection limits of sensor L to Fe^3+ and L-Fe^3+complex to H2PO4 anion were estimated to be 1.0 × 10^-9 mol/L. Notably, the sensor was retrievable to indicate dihydrogen phosphate an- ions with Fe^3+, and HePO4 , in turn, increased. This successive recognition feature of sensor L makes it a potential utility for Fe^3+ and H2PO4 anion detection in aqueous media.展开更多
基金supported by the National Natural Science Foundation of China(21064006,21161018,21262032)the Natural Science Foundation of Gansu Province(1010RJZA018)+1 种基金the Program for Changjiang ScholarsInnovative Research Teams in Universities of the Ministry of Education of China(IRT1177)
文摘To realize highly selective relay recognition of Fe3+ and H2PO4^- ions, a simple benzimidazole-based fluorescent chemosensor (L) was designed and synthesized. Sensor L displays rapid, highly selective, and sensitive recognition to Fe^3+ in H2O/DMSO (1:1, v/v) solutions. The in stitu-generated L-Fe^3+ complex solution exhibits a fast response and high selectivity toward dihydrogen phosphate anion via the Fe^3+ displacement approach. The detection limits of sensor L to Fe^3+ and L-Fe^3+complex to H2PO4 anion were estimated to be 1.0 × 10^-9 mol/L. Notably, the sensor was retrievable to indicate dihydrogen phosphate an- ions with Fe^3+, and HePO4 , in turn, increased. This successive recognition feature of sensor L makes it a potential utility for Fe^3+ and H2PO4 anion detection in aqueous media.