Considering that thermodynarmic irreversibility and hydrodynamic equations can not be derived rigorously and unifiedly from the Liouville equations, the anomalous Langevin equation in the Liouville space is proposed a...Considering that thermodynarmic irreversibility and hydrodynamic equations can not be derived rigorously and unifiedly from the Liouville equations, the anomalous Langevin equation in the Liouville space is proposed as a fundamental equation of statistical physics. This equation reflects that the law of motion of particles obeying reversible, deterministic laws in dynamics becomes irreversible and stochastic in thermodynamics. From this the fundamental equations of nonequilibrium thermodynamics, the principle of entropy increase and the theorem of minimum entropy production have been derived. The hydrodynamic equations, such as the generalized Navier-Stokes equation and the mass drift-diffusion equation etc. have been derived rigorously from the kinetic kinetic equation which is reduced from the anomalous Langevin equation in Liouville space. All these are unified and self consistent. But it is difficult to prove that entropy production density σ can never be negative everywhere for all the isolated inhomogeneous systems far from equilibrium.展开更多
应用有限时间热力学理论,建立了内可逆变温热源定常流Lenoir热机模型,导出了其功率P和热效率η。通过数值计算,得到了P和η与换热器的热导率分配u_(L)和工质与热源间的热容率匹配C_(wf1)/C_(H)之间的关系。结果表明:当高温侧换热器热导...应用有限时间热力学理论,建立了内可逆变温热源定常流Lenoir热机模型,导出了其功率P和热效率η。通过数值计算,得到了P和η与换热器的热导率分配u_(L)和工质与热源间的热容率匹配C_(wf1)/C_(H)之间的关系。结果表明:当高温侧换热器热导率U_(H)、低温侧换热器热导率u_(L)给定时,P-η为一个“点”;当u_(L)可优化时,P-u_(L)和η-u_(L)呈类抛物线型变化,即存在热导率分配最优值u L P(opt)、u L_(η(opt)),使循环达到最大功率点P_(max)和最大效率点ηmax;随着C_(wf1)/C_(H)的增大,P_(max)-C_(wf1)/C_(H)呈类抛物线型变化,即存在热容率匹配最优值C_(wf1)/C_(H)_(opt),使循环达到二次功率最大值(P_(max))_(max)。展开更多
The mathematic model of combined converter with two different flow modes of gas-cooled reactor was established. The effects of gas flow mode in gas-cooled reactor on combined converter was investigated with the yield ...The mathematic model of combined converter with two different flow modes of gas-cooled reactor was established. The effects of gas flow mode in gas-cooled reactor on combined converter was investigated with the yield of methanol was 1 400 kt/a. The results show that if the flow mode of the cooling pipe gas and the catalytic bed gas change from countercurrent to concurrent, the catalytic bed temperature distribution does not fit the most optimum temperature curve of reversible exothermic reaction and the heat duty of heat changer in whole process increased seriously, which means that there is much more equipment investment and more operating cost. The gas flow mode of gas-cooled reactor affects the methanol yield slightly. There- fore, the countercurrent gas flow mode of gas-cooled reactor is more lucrative in the combined converter process.展开更多
The study was conducted by researchers of the Research Center for Agricultural Energy and Machinery (CAEM) of the Ho Chi Minh City Nong Lam University (NLU) with the objectives of researching on drying ways for ca...The study was conducted by researchers of the Research Center for Agricultural Energy and Machinery (CAEM) of the Ho Chi Minh City Nong Lam University (NLU) with the objectives of researching on drying ways for cassava and of evaluating the adaptability of the reversible-airflow dryers in drying of cassava. The results obtained were as follows: done with thin-layer drying experiments, deep-layer drying experiments in the lab, and conducted drying experiments at the cassava dryer in actual production scale with two capacity sizes of 8 tons/batch and 16 tons/batch, that operates based on principle of reversible-airflow drying (SRA dryers). By the means of drying experiments, the performance of the SRA dryers such as optimal drying temperature, drying time, drying airflow reversal timing, moisture content uniformity of the sliced cassava mass after finishing drying process, drying cost, etc. was defined, the optimal drying temperature was 70 ~C, the total actual drying time for finishing one batch was 25-28 hours, applicable time for drying airflow reversal was after drying 16 hours since startup, the deviation in moisture content of the cassava mass after drying was just 2%-3%, the drying costs (per one kg of dried cassava) calculated were in turns VND407/kg at the SRA-8 dryer (8 tons/batch), and VND351/kg at the SRA-16 dryer (16 tons/batch). Obviously, comparing with the sale price of dry cassava at present, these levels of drying cost are accounting for 7%-10%, which are suitable and acceptable. Thus, investment of the dryers for sliced cassava would be effective and contribute to bring more income for Vietnamese cassava farmers and dryer end-users.展开更多
In this study, exergy efficiency is defined to evaluate convective heat transfer in a tube based on the local exergy destruction rate from the equilibrium equation of available potential. By calculating this destructi...In this study, exergy efficiency is defined to evaluate convective heat transfer in a tube based on the local exergy destruction rate from the equilibrium equation of available potential. By calculating this destruction rate, the local irreversibility of convective heat transfer can be evaluated quantitatively. The exergy efficiency and distribution of local exergy destruction rate for a smooth tube, an enhanced tube into which short-width twisted tape has been inserted, and an optimized tube with exergy destruction minimization are analyzed by solving the governing equations through a finite volume method(FVM). For the smooth tube, the exergy efficiency increases with increasing Reynolds number(Re) and decreases as the heat flux increases, whereas the Nusselt number(Nu) remains constant. For the enhanced tube, the exergy efficiency increases with increasing Reynolds number and increases as the short-width rate(w) increases. An analysis of the distribution of the local exergy destruction rate for a smooth tube shows that exergy destruction in the annular region between the core flow and tube wall is the highest. Furthermore, the exergy destruction for the enhanced and optimized tubes is reduced compared with that of the smooth tube. When the Reynolds number varies from 500 to 1750, the exergy efficiencies for the smooth, enhanced, and optimized tubes are in the ranges 0.367–0.485, 0.705–0.857, and 0.885–0.906, respectively. The results show that exergy efficiency is an effective evaluation criterion for convective heat transfer and the distribution of the local exergy destruction rate reveals the distribution of local irreversible loss. Disturbance in the core flow can reduce exergy destruction, and improve the exergy efficiency as well as heat transfer rate. Besides, optimization with exergy destruction minimization can provide effective guidance to improve the technology of heat transfer enhancement.展开更多
This study is devoted to investigate the inherent irreversibility and thermal stability in a reactive electrically conducting fluid flowing steadily through a channel with isothermal walls under the influence of a tra...This study is devoted to investigate the inherent irreversibility and thermal stability in a reactive electrically conducting fluid flowing steadily through a channel with isothermal walls under the influence of a transversely imposed magnetic field.Using a perturbation method coupled with a special type of Hermite-Pade' approximation technique,the simplified governing non-linear equation is solved and the important properties of overall flow structure including velocity field,temperature field and thermal criticality conditions are derived which essentially expedite to obtain expressions for volumetric entropy generation numbers,irreversibility distribution ratio and the Bejan number in the flow field.展开更多
A turbulent flow is maintained by an external supply of kinetic gradients. The scale at which energy is supplied greatly differs energy, which is eventually dissipated into heat at steep velocity from the scale at whi...A turbulent flow is maintained by an external supply of kinetic gradients. The scale at which energy is supplied greatly differs energy, which is eventually dissipated into heat at steep velocity from the scale at which energy is dissipated, the more so as the turbulent intensity (the Reynolds number) is larger. The resulting energy flux over the range of scales, intermediate between energy injection and dissipation, acts as a source of time irreversibility. As it is now possible to follow accurately fluid particles in a turbulent flow field, both from laboratory experiments and from numerical simulations, a natural question arises: how do we detect time irreversibility from these Lagrangian data? Here we discuss recent results concerning this problem. For Lagrangian statistics involving more than one fluid particle, the distance between fluid particles introduces an intrinsic length scale into the problem. The evolution of quantities dependent on the relative motion between these fluid particles, including the kinetic energy in the relative motion, or the configuration of an initially isotropic structure can be related to the equal-time correlation functions of the velocity field, and is therefore sensitive to the energy flux through scales, hence to the irreversibility of the flow. In contrast, for single- particle Lagrangian statistics, the most often studied velocity structure functions cannot distinguish the "arrow of time". Recent observations from experimental and numerical simulation data, however, show that the change of kinetic energy following the particle motion, is sensitive to time-reversal. We end the survey with a brief discussion of the implication of this line of work.展开更多
文摘Considering that thermodynarmic irreversibility and hydrodynamic equations can not be derived rigorously and unifiedly from the Liouville equations, the anomalous Langevin equation in the Liouville space is proposed as a fundamental equation of statistical physics. This equation reflects that the law of motion of particles obeying reversible, deterministic laws in dynamics becomes irreversible and stochastic in thermodynamics. From this the fundamental equations of nonequilibrium thermodynamics, the principle of entropy increase and the theorem of minimum entropy production have been derived. The hydrodynamic equations, such as the generalized Navier-Stokes equation and the mass drift-diffusion equation etc. have been derived rigorously from the kinetic kinetic equation which is reduced from the anomalous Langevin equation in Liouville space. All these are unified and self consistent. But it is difficult to prove that entropy production density σ can never be negative everywhere for all the isolated inhomogeneous systems far from equilibrium.
文摘应用有限时间热力学理论,建立了内可逆变温热源定常流Lenoir热机模型,导出了其功率P和热效率η。通过数值计算,得到了P和η与换热器的热导率分配u_(L)和工质与热源间的热容率匹配C_(wf1)/C_(H)之间的关系。结果表明:当高温侧换热器热导率U_(H)、低温侧换热器热导率u_(L)给定时,P-η为一个“点”;当u_(L)可优化时,P-u_(L)和η-u_(L)呈类抛物线型变化,即存在热导率分配最优值u L P(opt)、u L_(η(opt)),使循环达到最大功率点P_(max)和最大效率点ηmax;随着C_(wf1)/C_(H)的增大,P_(max)-C_(wf1)/C_(H)呈类抛物线型变化,即存在热容率匹配最优值C_(wf1)/C_(H)_(opt),使循环达到二次功率最大值(P_(max))_(max)。
文摘The mathematic model of combined converter with two different flow modes of gas-cooled reactor was established. The effects of gas flow mode in gas-cooled reactor on combined converter was investigated with the yield of methanol was 1 400 kt/a. The results show that if the flow mode of the cooling pipe gas and the catalytic bed gas change from countercurrent to concurrent, the catalytic bed temperature distribution does not fit the most optimum temperature curve of reversible exothermic reaction and the heat duty of heat changer in whole process increased seriously, which means that there is much more equipment investment and more operating cost. The gas flow mode of gas-cooled reactor affects the methanol yield slightly. There- fore, the countercurrent gas flow mode of gas-cooled reactor is more lucrative in the combined converter process.
文摘The study was conducted by researchers of the Research Center for Agricultural Energy and Machinery (CAEM) of the Ho Chi Minh City Nong Lam University (NLU) with the objectives of researching on drying ways for cassava and of evaluating the adaptability of the reversible-airflow dryers in drying of cassava. The results obtained were as follows: done with thin-layer drying experiments, deep-layer drying experiments in the lab, and conducted drying experiments at the cassava dryer in actual production scale with two capacity sizes of 8 tons/batch and 16 tons/batch, that operates based on principle of reversible-airflow drying (SRA dryers). By the means of drying experiments, the performance of the SRA dryers such as optimal drying temperature, drying time, drying airflow reversal timing, moisture content uniformity of the sliced cassava mass after finishing drying process, drying cost, etc. was defined, the optimal drying temperature was 70 ~C, the total actual drying time for finishing one batch was 25-28 hours, applicable time for drying airflow reversal was after drying 16 hours since startup, the deviation in moisture content of the cassava mass after drying was just 2%-3%, the drying costs (per one kg of dried cassava) calculated were in turns VND407/kg at the SRA-8 dryer (8 tons/batch), and VND351/kg at the SRA-16 dryer (16 tons/batch). Obviously, comparing with the sale price of dry cassava at present, these levels of drying cost are accounting for 7%-10%, which are suitable and acceptable. Thus, investment of the dryers for sliced cassava would be effective and contribute to bring more income for Vietnamese cassava farmers and dryer end-users.
基金supported by the National Basic Research Program of China(Grant No.2013CB228302)
文摘In this study, exergy efficiency is defined to evaluate convective heat transfer in a tube based on the local exergy destruction rate from the equilibrium equation of available potential. By calculating this destruction rate, the local irreversibility of convective heat transfer can be evaluated quantitatively. The exergy efficiency and distribution of local exergy destruction rate for a smooth tube, an enhanced tube into which short-width twisted tape has been inserted, and an optimized tube with exergy destruction minimization are analyzed by solving the governing equations through a finite volume method(FVM). For the smooth tube, the exergy efficiency increases with increasing Reynolds number(Re) and decreases as the heat flux increases, whereas the Nusselt number(Nu) remains constant. For the enhanced tube, the exergy efficiency increases with increasing Reynolds number and increases as the short-width rate(w) increases. An analysis of the distribution of the local exergy destruction rate for a smooth tube shows that exergy destruction in the annular region between the core flow and tube wall is the highest. Furthermore, the exergy destruction for the enhanced and optimized tubes is reduced compared with that of the smooth tube. When the Reynolds number varies from 500 to 1750, the exergy efficiencies for the smooth, enhanced, and optimized tubes are in the ranges 0.367–0.485, 0.705–0.857, and 0.885–0.906, respectively. The results show that exergy efficiency is an effective evaluation criterion for convective heat transfer and the distribution of the local exergy destruction rate reveals the distribution of local irreversible loss. Disturbance in the core flow can reduce exergy destruction, and improve the exergy efficiency as well as heat transfer rate. Besides, optimization with exergy destruction minimization can provide effective guidance to improve the technology of heat transfer enhancement.
文摘This study is devoted to investigate the inherent irreversibility and thermal stability in a reactive electrically conducting fluid flowing steadily through a channel with isothermal walls under the influence of a transversely imposed magnetic field.Using a perturbation method coupled with a special type of Hermite-Pade' approximation technique,the simplified governing non-linear equation is solved and the important properties of overall flow structure including velocity field,temperature field and thermal criticality conditions are derived which essentially expedite to obtain expressions for volumetric entropy generation numbers,irreversibility distribution ratio and the Bejan number in the flow field.
基金grateful to the Max Planck Society for continuous support to our research.financial support from ANR(contract TEC 2),the Alexander von Humboldt Foundation,and the PSMN at the Ecole Normale Sup′erieure de Lyon
文摘A turbulent flow is maintained by an external supply of kinetic gradients. The scale at which energy is supplied greatly differs energy, which is eventually dissipated into heat at steep velocity from the scale at which energy is dissipated, the more so as the turbulent intensity (the Reynolds number) is larger. The resulting energy flux over the range of scales, intermediate between energy injection and dissipation, acts as a source of time irreversibility. As it is now possible to follow accurately fluid particles in a turbulent flow field, both from laboratory experiments and from numerical simulations, a natural question arises: how do we detect time irreversibility from these Lagrangian data? Here we discuss recent results concerning this problem. For Lagrangian statistics involving more than one fluid particle, the distance between fluid particles introduces an intrinsic length scale into the problem. The evolution of quantities dependent on the relative motion between these fluid particles, including the kinetic energy in the relative motion, or the configuration of an initially isotropic structure can be related to the equal-time correlation functions of the velocity field, and is therefore sensitive to the energy flux through scales, hence to the irreversibility of the flow. In contrast, for single- particle Lagrangian statistics, the most often studied velocity structure functions cannot distinguish the "arrow of time". Recent observations from experimental and numerical simulation data, however, show that the change of kinetic energy following the particle motion, is sensitive to time-reversal. We end the survey with a brief discussion of the implication of this line of work.