In this study, we investigate the optimal location of access points (APs) to connect end nodes with a service provider through power-line communication in smartgrid communication networks. APs are the gateways of po...In this study, we investigate the optimal location of access points (APs) to connect end nodes with a service provider through power-line communication in smartgrid communication networks. APs are the gateways of power-distribution communication networks, connecting users to control centers. Hence, they are vital for the reliable, safe, and economical operation of a power system. This paper proposes a planning method for AP allocation that takes into consideration economics, reliability, network delay, and (n-l) resilience. First, an optimization model for the AP location is established, which minimizes the cost of installing APs, while satisfying the reliability, network delay, and (n-1) resilience constraints. Then, an improved genetic algorithm is proposed to solve the optimization problem. The simulation results indicate that the proposed planning method can deal with diverse network conditions satisfactorily. Furthermore, it can be applied effectively with high flexibility and scalability.展开更多
基金supported by the National High Technology Research and Development Program of China(2012AA050801)
文摘In this study, we investigate the optimal location of access points (APs) to connect end nodes with a service provider through power-line communication in smartgrid communication networks. APs are the gateways of power-distribution communication networks, connecting users to control centers. Hence, they are vital for the reliable, safe, and economical operation of a power system. This paper proposes a planning method for AP allocation that takes into consideration economics, reliability, network delay, and (n-l) resilience. First, an optimization model for the AP location is established, which minimizes the cost of installing APs, while satisfying the reliability, network delay, and (n-1) resilience constraints. Then, an improved genetic algorithm is proposed to solve the optimization problem. The simulation results indicate that the proposed planning method can deal with diverse network conditions satisfactorily. Furthermore, it can be applied effectively with high flexibility and scalability.