基于燃气涡轮发动机由计划维修模式向视情维修(Condition Based Maintenance, CBM)模式转变、由被动保障向主动保障发展的实际需求,针对目前燃气涡轮发动机在故障预测与健康管理(Prognostics and Health Management, PHM)系统设计上存...基于燃气涡轮发动机由计划维修模式向视情维修(Condition Based Maintenance, CBM)模式转变、由被动保障向主动保障发展的实际需求,针对目前燃气涡轮发动机在故障预测与健康管理(Prognostics and Health Management, PHM)系统设计上存在的整体性与系统性不强的问题,通过开展燃气涡轮发动机的PHM技术研究,围绕故障诊断、寿命预测、保障决策等PHM系统的核心功能要素,提出了一种新型燃气涡轮发动机PHM系统架构。该架构包括实时监测模块与保障决策模块,实时监测模块主要基于测试性建模实现故障诊断逻辑设计以满足涡轮发动机故障检测与健康管理的实时性要求,保障决策模块为燃气涡轮发动机的CBM保障提供了一种数据驱动的决策生成方法,通过长短时记忆网络(Long Short-Term Memory, LSTM)算法预测关键部件寿命,以匹配最佳的维修保障方案,提升燃气涡轮发动机的保障效能,最后给出了该系统架构的部分核心功能的设计。展开更多
Mixed-effects models,also called random-effects models,are a regression type of analysis which enables the analyst to not only describe the trend over time within each subject,but also to describe the variation among ...Mixed-effects models,also called random-effects models,are a regression type of analysis which enables the analyst to not only describe the trend over time within each subject,but also to describe the variation among different subjects.Nonlinear mixed-effects models provide a powerful and flexible tool for handling the unbalanced count data.In this paper,nonlinear mixed-effects models are used to analyze the failure data from a repairable system with multiple copies.By using this type of models,statistical inferences about the population and all copies can be made when accounting for copy-to-copy variance.Results of fitting nonlinear mixed-effects models to nine failure-data sets show that the nonlinear mixed-effects models provide a useful tool for analyzing the failure data from multi-copy repairable systems.展开更多
文摘基于燃气涡轮发动机由计划维修模式向视情维修(Condition Based Maintenance, CBM)模式转变、由被动保障向主动保障发展的实际需求,针对目前燃气涡轮发动机在故障预测与健康管理(Prognostics and Health Management, PHM)系统设计上存在的整体性与系统性不强的问题,通过开展燃气涡轮发动机的PHM技术研究,围绕故障诊断、寿命预测、保障决策等PHM系统的核心功能要素,提出了一种新型燃气涡轮发动机PHM系统架构。该架构包括实时监测模块与保障决策模块,实时监测模块主要基于测试性建模实现故障诊断逻辑设计以满足涡轮发动机故障检测与健康管理的实时性要求,保障决策模块为燃气涡轮发动机的CBM保障提供了一种数据驱动的决策生成方法,通过长短时记忆网络(Long Short-Term Memory, LSTM)算法预测关键部件寿命,以匹配最佳的维修保障方案,提升燃气涡轮发动机的保障效能,最后给出了该系统架构的部分核心功能的设计。
文摘Mixed-effects models,also called random-effects models,are a regression type of analysis which enables the analyst to not only describe the trend over time within each subject,but also to describe the variation among different subjects.Nonlinear mixed-effects models provide a powerful and flexible tool for handling the unbalanced count data.In this paper,nonlinear mixed-effects models are used to analyze the failure data from a repairable system with multiple copies.By using this type of models,statistical inferences about the population and all copies can be made when accounting for copy-to-copy variance.Results of fitting nonlinear mixed-effects models to nine failure-data sets show that the nonlinear mixed-effects models provide a useful tool for analyzing the failure data from multi-copy repairable systems.