The normal H ∞ control design deals with both plant modeling uncertainties and exogenous signal uncertainties by constructing a controller which stabilizes uncertain li near systems while satisfying an H ∞ norm ...The normal H ∞ control design deals with both plant modeling uncertainties and exogenous signal uncertainties by constructing a controller which stabilizes uncertain li near systems while satisfying an H ∞ norm bound constraint on disturbance attenuation for all admissible uncertainties. However, the control design may result in unsatisfactory performances or even instabilities in the event of sensor failures in practical plants. This paper focuses on the problem of the design of robust reliable H ∞ control for a class of time varying uncertainty system with sensor failures. The paper presents a novel technique which deal with this problem by solving three linear matrix inequalities (LMIs). The strict proof guarantees the feasibility of this approach.展开更多
In order to improve the security and reliability for autonomous underwater vehicle (AUV) navigation, an H∞ robust fault-tolerant controller was designed after analyzing variations in state-feedback gain Operating c...In order to improve the security and reliability for autonomous underwater vehicle (AUV) navigation, an H∞ robust fault-tolerant controller was designed after analyzing variations in state-feedback gain Operating conditions and the design method were then analyzed so that the control problem could be expressed as a mathematical optimization problem. This permitted the use of linear matrix inequalities (LMI) to solve for the Hv controller for the system. When considering different actuator failures, these conditions were then also mathematically expressed, allowing the H∞ robust controller to solve for these events and thus be fault-tolerant. Finally, simulation results showed that the H∞ robust fault-tolerant controller could provide precise AUV navigation control with strong robustness.展开更多
文摘The normal H ∞ control design deals with both plant modeling uncertainties and exogenous signal uncertainties by constructing a controller which stabilizes uncertain li near systems while satisfying an H ∞ norm bound constraint on disturbance attenuation for all admissible uncertainties. However, the control design may result in unsatisfactory performances or even instabilities in the event of sensor failures in practical plants. This paper focuses on the problem of the design of robust reliable H ∞ control for a class of time varying uncertainty system with sensor failures. The paper presents a novel technique which deal with this problem by solving three linear matrix inequalities (LMIs). The strict proof guarantees the feasibility of this approach.
基金Supported by the Heilongjiang Postdoctoral Foundation under Grant No. LH-04010
文摘In order to improve the security and reliability for autonomous underwater vehicle (AUV) navigation, an H∞ robust fault-tolerant controller was designed after analyzing variations in state-feedback gain Operating conditions and the design method were then analyzed so that the control problem could be expressed as a mathematical optimization problem. This permitted the use of linear matrix inequalities (LMI) to solve for the Hv controller for the system. When considering different actuator failures, these conditions were then also mathematically expressed, allowing the H∞ robust controller to solve for these events and thus be fault-tolerant. Finally, simulation results showed that the H∞ robust fault-tolerant controller could provide precise AUV navigation control with strong robustness.