期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
交通状态可预测性量化方法
1
作者 李文根 杨涵晨 +1 位作者 刘天颖 关佶红 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第1期49-56,共8页
针对现有城市交通状态的可预测性缺乏有效量化分析方法这一问题,提出了基于熵的交通状态可预测性量化方法.首先,从静态可预测性出发,通过计算交通状态序列的熵得到对应的量化规律性,利用二元熵函数将该规律性转化为可预测性;然后,考虑... 针对现有城市交通状态的可预测性缺乏有效量化分析方法这一问题,提出了基于熵的交通状态可预测性量化方法.首先,从静态可预测性出发,通过计算交通状态序列的熵得到对应的量化规律性,利用二元熵函数将该规律性转化为可预测性;然后,考虑到交通状态的可预测性会随着时间动态变化,通过瞬时熵实现了对特定时刻可预测性的量化计算;最后,分析了4类代表性交通状态预测模型的性能与交通状态可预测性之间的关联关系.实验表明,所提出的方法能够从静态和动态两个方面有效量化交通状态的可预测性,并揭示了不同类型的交通状态预测模型对可预测性依赖关系的差异,为交通状态预测模型的选择和设计提供了依据. 展开更多
关键词 智能交通 交通状态 可预测性量化 预测模型
下载PDF
Quantifying Dynamical Predictability:the Pseudo-Ensemble Approach 被引量:1
2
作者 Jianbo GAO Wenwen TUNG Jing HU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2009年第5期569-588,共20页
The ensemble technique has been widely used in numerical weather prediction and extended-range forecasting.Current approaches to evaluate the predictability using the ensemble technique can be divided into two major g... The ensemble technique has been widely used in numerical weather prediction and extended-range forecasting.Current approaches to evaluate the predictability using the ensemble technique can be divided into two major groups.One is dynamical,including generating Lyapunov vectors,bred vectors,and singular vectors,sampling the fastest error-growing directions of the phase space,and examining the dependence of prediction efficiency on ensemble size.The other is statistical,including distributional analysis and quantifying prediction utility by the Shannon entropy and the relative entropy.Currently,with simple models,one could choose as many ensembles as possible,with each ensemble containing a large number of members.When the forecast models become increasingly complicated,however,one would only be able to afford a small number of ensembles,each with limited number of members,thus sacrificing estimation accuracy of the forecast errors.To uncover connections between different information theoretic approaches and between dynamical and statistical approaches,we propose an (∈;T)-entropy and scale-dependent Lyapunov exponent——based general theoretical framework to quantify information loss in ensemble forecasting.More importantly,to tremendously expedite computations,reduce data storage,and improve forecasting accuracy,we propose a technique for constructing a large number of "pseudo" ensembles from one single solution or scalar dataset.This pseudo-ensemble technique appears to be applicable under rather general conditions,one important situation being that observational data are available but the exact dynamical model is unknown. 展开更多
关键词 Dynamical predictability Ensemble forecasting Relative entropy Kolmogorov entropy Scale-dependent Lyapunov exponent
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部