Diurnal and semi-diurnal tides in the Taiwan Strait and its adjacent areas are calculated by using a two-dimensional finite-difference model. Compared with data of more than 20 observation stations around the Taiwan S...Diurnal and semi-diurnal tides in the Taiwan Strait and its adjacent areas are calculated by using a two-dimensional finite-difference model. Compared with data of more than 20 observation stations around the Taiwan Strait, the model-produced results agree quite well with those of previous researches using observational data from coastal tidal gauge stations. According to the results, the co-tidal and co-range charts are given. Furthermore, the characteristics of 8 major tidal constituents have been uminated respectively. The result shows that: (1) The tide motion can be attributed to the interaction between the degenerative rotary tidal system in the north and the progressive tidal system in the south. (2) The southward and northward tidal waves of semi-diurnal tide converge in the middle of the Taiwan Strait while the diurnal tidal waves propagate southwestward through the Taiwan Strait and the Luzon Strait. (3) The maximum amplitude of semi-diurnal tides exists at the area between the Meizhou Bay and Xinghua Bay, and that of diurnal tides appears in the region to the east of the Leizhou Peninsula, (4) The patterns of co-tidal and co-range charts of N2, K2 and P1, Q1 tidal constituents are similar to those of M2, S2 and K1 O1 tidat constituents, respectively展开更多
Based on 4 cruise surveys from July 2006 to October 2007 in the Taiwan Strait, the species composition, community structure and spatio-temporal distribution of dinoflagellate were studied. A total of 131 dinoflagellat...Based on 4 cruise surveys from July 2006 to October 2007 in the Taiwan Strait, the species composition, community structure and spatio-temporal distribution of dinoflagellate were studied. A total of 131 dinoflagellates belonging to 18 genera were identified. The population was dominated by hyperthermal and hyperhaline species accounting for 72.52% of the total species. Eurythermal and euryhaline species were the second most common one accounting for 25.19% of the total species. It was only 2.29% for neritic species. The maximum species number occurred in summer, while the maximum cell density appeared in spring. The average dinoflagellate cell density was 404.96x104 cells/m3. It showed that the dinof]agellate cell density increased from the nearshore waters to the open sea and from the north to the south. Compared with the results during 1984-1985, the horizontal distribution pattern and seaeonal variation of the dinofiagellate have not changed significantly, but the dinoflagellate cell density increased by 3.01 times. Further analysis of the dinoflagellate abundance variations both in the spatial and temporal aspects, indicated that the abundance of dinoflagellate increased more significantly in cold seasons, and there was a larger increase in the north of the Taiwan Strait. Besides, the dinoflagellate community structure changed notably. It showed that the diversity and evenness index were relatively high, and the proportion of dinoflageliate cell density to the total phytoplankton increased.展开更多
By using the reanalysis data, the impact of oceanic eddies and frontal wave on Kuroshio front to the east of Taiwan (KFETW) is studied. The result indicates that cold eddies (warm eddies) corresponding to the firs...By using the reanalysis data, the impact of oceanic eddies and frontal wave on Kuroshio front to the east of Taiwan (KFETW) is studied. The result indicates that cold eddies (warm eddies) corresponding to the first baroclinic mode of Rossby wave can weaken (strengthen) the strength of the KFETW and narrow (widen) the width of this front. A frontal wave of the KFETW during January to February in 1991 is detected from the reanalysis data. And the trough (crest) of the frontal wave may weaken (strengthen) the strength of the KFETW and narrow (widen) the width and thickness of this front. It is found through the diagnostic analysis of the energy source of the frontal wave that the contribution of barotropic instability or that of baroclinic instability is more than that of Ketvin-Helmholtz (K-H) instability by 1 - 2 order of magnitude, and the contribution of the baroclinic instability is 5 times than that of the barotropic instability, thereby the frontal wave is basically driven by the baroclinic instability.展开更多
Based on the field surveys and repeated cross-profile observations combined with the comparison of many years’ topog-raphic maps,this study shows the spatial variability and varying patterns of coastal erosion along ...Based on the field surveys and repeated cross-profile observations combined with the comparison of many years’ topog-raphic maps,this study shows the spatial variability and varying patterns of coastal erosion along the west coast of the Taiwan Strait.Regional differentiation in the Meso-Cenozoic coastal tectonics determined the irregular coastline and geological background for large-scale coastal erosion distribution.The intensity of coastal erosion on the west side of the Taiwan Strait is mild in the northern region,severe in the central region and modest in the southern region.The beaches along the coast are mainly backed by dunes,sea-walls or cliffs.The dunes and beaches show periodic erosion and recovery along the coast adjacent to river mouths,while persistent retreat of frontal dunes and beaches tends to occur in other areas.The beach erosion occurs mainly in front of seawalls.Due to the low strength of the unconsolidated sediment the soft cliffs suffer the severest coastline recession.Sea level rise and river sediment discharge reduction are main causes of coastal erosion.Storm surge is common in the studied area and plays an important role in the progress of coastal erosion.Human activities including coastal constructions and sand mining also tend to interfere strongly with the balance of sediment budget in some coastal cells.展开更多
The relationship between the Kuroshio transport to the east of Taiwan and the SSHA (Sea Surface Height Anomaly) field is studied based on the World Ocean Circulation Experiment (WOCE) PCM-1 moored current meter array ...The relationship between the Kuroshio transport to the east of Taiwan and the SSHA (Sea Surface Height Anomaly) field is studied based on the World Ocean Circulation Experiment (WOCE) PCM-1 moored current meter array observation, the satellite altimeter data from the MSLA (Map of Sea Level Anomaly) products merged with the ERS and TOPEX/POSEIDON (T/P) data sets, and the WOCE satellite-tracked drifting buoy data. It is confirmed that the Kuroshio transport across PCM-1 array highly correlates with the SSHA upstream (22°-24°N, 121.75°-124°E). The SSHA is not locally generated by the developed Kuroshio meandering but is from the interior ocean and is propagating westward or northwestward. During the period from October 1992 to January 1998, two events of the northwestward propagating negative SSHA occurred, during which the SSHA merged into the Kuroshio and caused the remarkable low transport events in contrast to the normal westward propagating negative SSHA. It is also shown that the lower Kuroshio transport event would be generated in different ways. The negative anomaly in the upstream of PCM-1 array can reduce the Kuroshio transport by either offshore or onshore Kuroshio meandering. The positive anomaly, which is strong enough to detour the Kuroshio, can cause an offshore meandering and a low transport event at the PCM-1 array.展开更多
A quasi-global high-resolution HYbrid Coordinate Ocean Model (HYCOM) is used to investigate seasonal variations of water transports through the four main straits in the South China Sea. The results show that the annua...A quasi-global high-resolution HYbrid Coordinate Ocean Model (HYCOM) is used to investigate seasonal variations of water transports through the four main straits in the South China Sea. The results show that the annual transports through the four straits Luzon Strait, Taiwan Strait, Sunda Shelf and Mindoro Strait are -4.5, 2.3, 0.5 and 1.7 Sv (1 Sv=106 m3s-1), respectively. The Mindoro Strait has an important outflow that accounts for over one third of the total inflow through the Luzon Strait. Furthermore, it indicates that there are strong seasonal variations of water transport in the four straits. The water transport through the Luzon Strait (Taiwan Strait, Sunda Shelf, Mindoro Strait) has a maximum value of -7.6 Sv in December (3.1 Sv in July, 2.1S v in January, 4.5Sv in November), a minimum value of -2.1 Sv in June (1.5 Sv in October, -1.0 Sv in June, -0.2 Sv in May), respectively.展开更多
The size-fractionated phytoplankton biomass, and the spatial and temporal variations in abundance of Synechococcus (SYN) and picoeukaryotes (PEUK) were measured in the Taiwan Strait during three cruises (August 1997, ...The size-fractionated phytoplankton biomass, and the spatial and temporal variations in abundance of Synechococcus (SYN) and picoeukaryotes (PEUK) were measured in the Taiwan Strait during three cruises (August 1997, February-March 1998, and August 1998). The results show that picophytoplankton and nanophytoplankton dominate the phytoplankton biomass, in average of 38% and 40%, respectively. SYN and PEUK varied over time in abundance and carbon biomass, greater in summer than in winter, in range of (7.70–209.2)×106 and (0.75–15.4)×106 cells/cm2 in the abundance, and 1.93–52.3 and 1.57–32.4 μgC/cm2 in the carbon biomass, for SYN and PEUK, respectively. The horizontal distributions of both groups were diurnal but heterogeneous in abundance, depending on the groups and layer of depths. Temperature is the key controlling factor for picophytoplankton distribution (especially in winter) in the Strait.展开更多
The Tainan Basin is one of the set of Cenozoic extensional basins along northern margin of the South China Sea that experienced extension and subsequently thermal subsidence. The Tainan Basin is close to the Taiwan Ar...The Tainan Basin is one of the set of Cenozoic extensional basins along northern margin of the South China Sea that experienced extension and subsequently thermal subsidence. The Tainan Basin is close to the Taiwan Arc-Trench System and straddles a transition zone between oceanic and continental crust. A new regional multi-channel seismic profile (973-01) across the region of NE South China Sea is introduced in this paper. In seismic stratigraphy and structural geology, a model of Cenozoic tectono-sedimentation of the Tainan Basin is established. The results show that three stages can be suggested in Tainan Basin; In Stage A (Oligocene (?)-Lower Miocene) the stratigraphy shows restricted rifting, indicating crustal extension. Terrestrial sedi- ments mostly filled the faulted sags of the North Depression on the continental shelf. Structural highs, including the Central Uplift, blocked material transportation to the South Depression in abyssal basin. In Stage B the Tainan Basin (Middle-Upper Miocene) exhibits a broad subsidence resulting from the post-rifting thermal cooling. The faulted-sags in North Depression had been filled up. Terrestrial materials were transported over the structural highs and deposited directly in the South Depression through sub- marine gullies or canyons. This sedimentation resulted in a crucial change in the slope to a modem shape. In Stage C (Latest Miocene-Recent) a phase change from extension to compression took place due to the orogeny caused by the overthrusting of the Luzon volcanic arc. Many inverse structures, such as thrusts, fault bend folds, and a regional unconformity were formed. Forland basin began developing.展开更多
Based on field data for nutrients collected on the continental shelf of the East China Sea(ECS) during summer 2006, the structure and variations of nutrients in every water mass related to the Taiwan Warm Current(TWC)...Based on field data for nutrients collected on the continental shelf of the East China Sea(ECS) during summer 2006, the structure and variations of nutrients in every water mass related to the Taiwan Warm Current(TWC) were analyzed. The supplementary effect of nutrient of upwelling on harmful algal blooms(HABs) in the ECS was also estimated, based on upwelling data. Then the maintenance contribution of nutrient of upwelling to HABs was assessed. The results showed that N/P ratio is fairly low in both surface and deep layers of the TWC, which possibly controls nutrient structure of the HABs-frequently-occuring areas. In upwelling areas, the rate of phosphate(PO4-P) uptake exceeds that of nitrate(NO3-N) of the TWC. The TWC may relieve PO4-P limitation during the process of HABs. Furthermore, upwelling plays an important role in providing nutrients to HABs. After estimating nutrient fluxes(NO3-N, PO4-P, Si O3-Si) in the upwelling areas along a typical section(S07), the results showed that the nutrient uptake rate is the greatest at 10-20 m below euphotic zone, sustaining the ongoing presence of HABs. The uptake rate of PO4-P is the highest among dissolved inorganic nutrients. Therefore, upwelling is most likely the main source of PO4-P supply to HABs.展开更多
The temporal variations in the frequency of tropical cyclones (TCs) traversing the Taiwan and Hainan Islands (TH islands), were analyzed using a best-track TC dataset from the Joint Typhoon Warning Center for the peri...The temporal variations in the frequency of tropical cyclones (TCs) traversing the Taiwan and Hainan Islands (TH islands), were analyzed using a best-track TC dataset from the Joint Typhoon Warning Center for the period 1945-2007. Results show that the oscillations were interannual and interdecadal on the timescales of 2-8 and 8-12 years, respectively. It is also shown that the number of TCs formed in the western North Pacific basin (WNP) and of those traversing the TH islands varied intraseasonally. These results also held for typhoons traversing the TH islands, although the oscillations were less apparent. This study identified interrelationships between the frequency of TCs making landfall on the TH islands and the East Asia summer monsoon (EASM), the South Asia summer monsoon (SASM), and the South China Sea summer monsoon (SCSSM). The SCSSM significantly influenced the number of TCs traversing Hainan Island, but had little influence on the number of TCs traversing Taiwan Island. By contrast, the SASM influenced the numbers of TCs traversing both of the TH islands, shown by correlation coefficients of 0.41 for Taiwan Island and -0.25 for Hainan Island. In addition, the frequency of TC landfall on Taiwan Island increased during years of enhanced EASM, as indicated by a correlation coefficient of 0.4.展开更多
基金supported by the National Natural Science Foundation of China under contract Nos. 40576015, 40810069004 and 40821063by the key research project of Fujian Province under contract No. 2004N203by the Fujian demonstrating region of the "863" Project of the Ministry of Science and Technology of China
文摘Diurnal and semi-diurnal tides in the Taiwan Strait and its adjacent areas are calculated by using a two-dimensional finite-difference model. Compared with data of more than 20 observation stations around the Taiwan Strait, the model-produced results agree quite well with those of previous researches using observational data from coastal tidal gauge stations. According to the results, the co-tidal and co-range charts are given. Furthermore, the characteristics of 8 major tidal constituents have been uminated respectively. The result shows that: (1) The tide motion can be attributed to the interaction between the degenerative rotary tidal system in the north and the progressive tidal system in the south. (2) The southward and northward tidal waves of semi-diurnal tide converge in the middle of the Taiwan Strait while the diurnal tidal waves propagate southwestward through the Taiwan Strait and the Luzon Strait. (3) The maximum amplitude of semi-diurnal tides exists at the area between the Meizhou Bay and Xinghua Bay, and that of diurnal tides appears in the region to the east of the Leizhou Peninsula, (4) The patterns of co-tidal and co-range charts of N2, K2 and P1, Q1 tidal constituents are similar to those of M2, S2 and K1 O1 tidat constituents, respectively
基金supported by the Marine Biological Sample Collection of the Chinese Offshore Investigation and Assessment (No. 908-ZC-II-02)the Ministry of Science and Technology for Commonweal Project of China (No. 200905009-3)
文摘Based on 4 cruise surveys from July 2006 to October 2007 in the Taiwan Strait, the species composition, community structure and spatio-temporal distribution of dinoflagellate were studied. A total of 131 dinoflagellates belonging to 18 genera were identified. The population was dominated by hyperthermal and hyperhaline species accounting for 72.52% of the total species. Eurythermal and euryhaline species were the second most common one accounting for 25.19% of the total species. It was only 2.29% for neritic species. The maximum species number occurred in summer, while the maximum cell density appeared in spring. The average dinoflagellate cell density was 404.96x104 cells/m3. It showed that the dinof]agellate cell density increased from the nearshore waters to the open sea and from the north to the south. Compared with the results during 1984-1985, the horizontal distribution pattern and seaeonal variation of the dinofiagellate have not changed significantly, but the dinoflagellate cell density increased by 3.01 times. Further analysis of the dinoflagellate abundance variations both in the spatial and temporal aspects, indicated that the abundance of dinoflagellate increased more significantly in cold seasons, and there was a larger increase in the north of the Taiwan Strait. Besides, the dinoflagellate community structure changed notably. It showed that the diversity and evenness index were relatively high, and the proportion of dinoflageliate cell density to the total phytoplankton increased.
文摘By using the reanalysis data, the impact of oceanic eddies and frontal wave on Kuroshio front to the east of Taiwan (KFETW) is studied. The result indicates that cold eddies (warm eddies) corresponding to the first baroclinic mode of Rossby wave can weaken (strengthen) the strength of the KFETW and narrow (widen) the width of this front. A frontal wave of the KFETW during January to February in 1991 is detected from the reanalysis data. And the trough (crest) of the frontal wave may weaken (strengthen) the strength of the KFETW and narrow (widen) the width and thickness of this front. It is found through the diagnostic analysis of the energy source of the frontal wave that the contribution of barotropic instability or that of baroclinic instability is more than that of Ketvin-Helmholtz (K-H) instability by 1 - 2 order of magnitude, and the contribution of the baroclinic instability is 5 times than that of the barotropic instability, thereby the frontal wave is basically driven by the baroclinic instability.
基金supported by the National Science Foundation of China (No.40976057)the State Oceanic Administration of China (No.908-02-03-04)
文摘Based on the field surveys and repeated cross-profile observations combined with the comparison of many years’ topog-raphic maps,this study shows the spatial variability and varying patterns of coastal erosion along the west coast of the Taiwan Strait.Regional differentiation in the Meso-Cenozoic coastal tectonics determined the irregular coastline and geological background for large-scale coastal erosion distribution.The intensity of coastal erosion on the west side of the Taiwan Strait is mild in the northern region,severe in the central region and modest in the southern region.The beaches along the coast are mainly backed by dunes,sea-walls or cliffs.The dunes and beaches show periodic erosion and recovery along the coast adjacent to river mouths,while persistent retreat of frontal dunes and beaches tends to occur in other areas.The beach erosion occurs mainly in front of seawalls.Due to the low strength of the unconsolidated sediment the soft cliffs suffer the severest coastline recession.Sea level rise and river sediment discharge reduction are main causes of coastal erosion.Storm surge is common in the studied area and plays an important role in the progress of coastal erosion.Human activities including coastal constructions and sand mining also tend to interfere strongly with the balance of sediment budget in some coastal cells.
文摘The relationship between the Kuroshio transport to the east of Taiwan and the SSHA (Sea Surface Height Anomaly) field is studied based on the World Ocean Circulation Experiment (WOCE) PCM-1 moored current meter array observation, the satellite altimeter data from the MSLA (Map of Sea Level Anomaly) products merged with the ERS and TOPEX/POSEIDON (T/P) data sets, and the WOCE satellite-tracked drifting buoy data. It is confirmed that the Kuroshio transport across PCM-1 array highly correlates with the SSHA upstream (22°-24°N, 121.75°-124°E). The SSHA is not locally generated by the developed Kuroshio meandering but is from the interior ocean and is propagating westward or northwestward. During the period from October 1992 to January 1998, two events of the northwestward propagating negative SSHA occurred, during which the SSHA merged into the Kuroshio and caused the remarkable low transport events in contrast to the normal westward propagating negative SSHA. It is also shown that the lower Kuroshio transport event would be generated in different ways. The negative anomaly in the upstream of PCM-1 array can reduce the Kuroshio transport by either offshore or onshore Kuroshio meandering. The positive anomaly, which is strong enough to detour the Kuroshio, can cause an offshore meandering and a low transport event at the PCM-1 array.
基金Supported by National Natural Science Foundation of China (No. 40806012, 40876013)Open Fund of the Key Laboratory of Ocean Circulation and Waves, Chinese Academy of Sciences (No. KLOCAW0803)Scientific Research Foundation for talent, Guangdong Ocean University (No. E06118)
文摘A quasi-global high-resolution HYbrid Coordinate Ocean Model (HYCOM) is used to investigate seasonal variations of water transports through the four main straits in the South China Sea. The results show that the annual transports through the four straits Luzon Strait, Taiwan Strait, Sunda Shelf and Mindoro Strait are -4.5, 2.3, 0.5 and 1.7 Sv (1 Sv=106 m3s-1), respectively. The Mindoro Strait has an important outflow that accounts for over one third of the total inflow through the Luzon Strait. Furthermore, it indicates that there are strong seasonal variations of water transport in the four straits. The water transport through the Luzon Strait (Taiwan Strait, Sunda Shelf, Mindoro Strait) has a maximum value of -7.6 Sv in December (3.1 Sv in July, 2.1S v in January, 4.5Sv in November), a minimum value of -2.1 Sv in June (1.5 Sv in October, -1.0 Sv in June, -0.2 Sv in May), respectively.
基金Supported by Natural Science Foundation of China (No.40730846 40521003)
文摘The size-fractionated phytoplankton biomass, and the spatial and temporal variations in abundance of Synechococcus (SYN) and picoeukaryotes (PEUK) were measured in the Taiwan Strait during three cruises (August 1997, February-March 1998, and August 1998). The results show that picophytoplankton and nanophytoplankton dominate the phytoplankton biomass, in average of 38% and 40%, respectively. SYN and PEUK varied over time in abundance and carbon biomass, greater in summer than in winter, in range of (7.70–209.2)×106 and (0.75–15.4)×106 cells/cm2 in the abundance, and 1.93–52.3 and 1.57–32.4 μgC/cm2 in the carbon biomass, for SYN and PEUK, respectively. The horizontal distributions of both groups were diurnal but heterogeneous in abundance, depending on the groups and layer of depths. Temperature is the key controlling factor for picophytoplankton distribution (especially in winter) in the Strait.
基金the National Basic Research Program (973)of China (No. 2007CB411704)the National Natural Science Foun-dation of China (No. 40676024)+1 种基金the Key Laboratory of MarginalSea Geologythe Chinese Academy of Sciences (Nos. KZCX3-SW-234 and MSGL0609)
文摘The Tainan Basin is one of the set of Cenozoic extensional basins along northern margin of the South China Sea that experienced extension and subsequently thermal subsidence. The Tainan Basin is close to the Taiwan Arc-Trench System and straddles a transition zone between oceanic and continental crust. A new regional multi-channel seismic profile (973-01) across the region of NE South China Sea is introduced in this paper. In seismic stratigraphy and structural geology, a model of Cenozoic tectono-sedimentation of the Tainan Basin is established. The results show that three stages can be suggested in Tainan Basin; In Stage A (Oligocene (?)-Lower Miocene) the stratigraphy shows restricted rifting, indicating crustal extension. Terrestrial sedi- ments mostly filled the faulted sags of the North Depression on the continental shelf. Structural highs, including the Central Uplift, blocked material transportation to the South Depression in abyssal basin. In Stage B the Tainan Basin (Middle-Upper Miocene) exhibits a broad subsidence resulting from the post-rifting thermal cooling. The faulted-sags in North Depression had been filled up. Terrestrial materials were transported over the structural highs and deposited directly in the South Depression through sub- marine gullies or canyons. This sedimentation resulted in a crucial change in the slope to a modem shape. In Stage C (Latest Miocene-Recent) a phase change from extension to compression took place due to the orogeny caused by the overthrusting of the Luzon volcanic arc. Many inverse structures, such as thrusts, fault bend folds, and a regional unconformity were formed. Forland basin began developing.
基金supported by the National Basic Research Program of China (973 Programunder contract No. 2010CB428701)the Marine Physical Variations in Eastern Marginal Seas of China and their Environmental Impacts (No. 2005CB422300)
文摘Based on field data for nutrients collected on the continental shelf of the East China Sea(ECS) during summer 2006, the structure and variations of nutrients in every water mass related to the Taiwan Warm Current(TWC) were analyzed. The supplementary effect of nutrient of upwelling on harmful algal blooms(HABs) in the ECS was also estimated, based on upwelling data. Then the maintenance contribution of nutrient of upwelling to HABs was assessed. The results showed that N/P ratio is fairly low in both surface and deep layers of the TWC, which possibly controls nutrient structure of the HABs-frequently-occuring areas. In upwelling areas, the rate of phosphate(PO4-P) uptake exceeds that of nitrate(NO3-N) of the TWC. The TWC may relieve PO4-P limitation during the process of HABs. Furthermore, upwelling plays an important role in providing nutrients to HABs. After estimating nutrient fluxes(NO3-N, PO4-P, Si O3-Si) in the upwelling areas along a typical section(S07), the results showed that the nutrient uptake rate is the greatest at 10-20 m below euphotic zone, sustaining the ongoing presence of HABs. The uptake rate of PO4-P is the highest among dissolved inorganic nutrients. Therefore, upwelling is most likely the main source of PO4-P supply to HABs.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q11-02)
文摘The temporal variations in the frequency of tropical cyclones (TCs) traversing the Taiwan and Hainan Islands (TH islands), were analyzed using a best-track TC dataset from the Joint Typhoon Warning Center for the period 1945-2007. Results show that the oscillations were interannual and interdecadal on the timescales of 2-8 and 8-12 years, respectively. It is also shown that the number of TCs formed in the western North Pacific basin (WNP) and of those traversing the TH islands varied intraseasonally. These results also held for typhoons traversing the TH islands, although the oscillations were less apparent. This study identified interrelationships between the frequency of TCs making landfall on the TH islands and the East Asia summer monsoon (EASM), the South Asia summer monsoon (SASM), and the South China Sea summer monsoon (SCSSM). The SCSSM significantly influenced the number of TCs traversing Hainan Island, but had little influence on the number of TCs traversing Taiwan Island. By contrast, the SASM influenced the numbers of TCs traversing both of the TH islands, shown by correlation coefficients of 0.41 for Taiwan Island and -0.25 for Hainan Island. In addition, the frequency of TC landfall on Taiwan Island increased during years of enhanced EASM, as indicated by a correlation coefficient of 0.4.