An idealized numerical wave flume has been established by finite element method on the bases of Navier Stokes equations through prescribing the appropriate boundary conditions for the open boundary,incident boundary,...An idealized numerical wave flume has been established by finite element method on the bases of Navier Stokes equations through prescribing the appropriate boundary conditions for the open boundary,incident boundary,free surface and solid boundary in this paper.The characteristics of waves propagating over a step have been investigated by this numerical model.The breaker wave height is determined depending on the kinetic criterion.The numerical model is verified by laboratory experiments,and the empirical formula for the damping of wave height due to breaking is also given by experiments.展开更多
Stability assessment of slopes has historically been performed assuming soils to be homogeneous in two-dimensional(2D) cases. In real cases, soils are usually inhomogeneous, and each slope collapse indicates a three-d...Stability assessment of slopes has historically been performed assuming soils to be homogeneous in two-dimensional(2D) cases. In real cases, soils are usually inhomogeneous, and each slope collapse indicates a three-dimensional(3D) nature. Based on a 3D rotational failure mechanism, this work develops an approach to account for the impact of the vertical strength inhomogeneity on the 3D stability of stepped slopes. Seismic actions are taken into account by introducing the concept of a horizontal seismic coefficient. An upper-bound expression for stability factors is derived in the light of the kinematic approach, and the most critical solution is obtained from an optimization programming. In comparison with the previously published solutions, the validity of the proposed method is shown. A sensitivity analysis is carried out to discuss parametric effects on the stability of 3D stepped inhomogeneous slopes.展开更多
One of the most important characters of blasting, a basic step of surface mining, is rock fragmentation. It directly effects on the costs of drilling and economics of the subsequent operations of loading, hauling and ...One of the most important characters of blasting, a basic step of surface mining, is rock fragmentation. It directly effects on the costs of drilling and economics of the subsequent operations of loading, hauling and crushing in mines. Adaptive neuro-fuzzy inference system (ANFIS) and radial basis function (RBF) show potentials for modeling the behavior of complex nonlinear processes such as those involved in frag- mentation due to blasting of rocks. In this paper we developed ANFIS and RBF methods for modeling of sizing of rock fragmentation due to bench blasting by estimation of 80% passing size (Kso) of Golgohar iron ore mine of Sirjan, lran. Comparing the results of ANFIS and RBF models shows that although the sta- tistical parameters RBF model is acceptable but the ANFIS proposed model is superior and also simpler because the ANFIS model is constructed using only two input parameters while seven input parameters used for construction of the RBF model.展开更多
Every compressor works in a limited operational range. Surge as one of the sources of this limitation has been studied for many years. In this research, an isolated blade row of compressor rotor is numerically modeled...Every compressor works in a limited operational range. Surge as one of the sources of this limitation has been studied for many years. In this research, an isolated blade row of compressor rotor is numerically modeled and solved. In order to improve operational limit and postpone the surge occurrence, a stepped blade of RAF6E with higher stall angle of attack is used to investigate the near stall flow behavior. In this study, several location of step on blades are tried and the results are compared with the case with no step on blades. It is shown that, as the step moves toward the leading edge of blades, the effect of delay on surge is reduced and even efficiency is also decreased significantly. By moving the step towards the trailing edge, surge is delayed due to the reattachment of flow after the step. Efficiency is also decreased but not in the order of the previous case.展开更多
Direct numerical simulation(DNS) was performed for the first time to study the flow over a backward-facing step at a high Reynolds number on a coarse grid.The flow over backward-facing step is the typical turbulent fl...Direct numerical simulation(DNS) was performed for the first time to study the flow over a backward-facing step at a high Reynolds number on a coarse grid.The flow over backward-facing step is the typical turbulent flow controlled by large eddy,in which the effect of small eddy could be negligible as an approximation.The grid dimension could easily satisfy the resolution requirement to describe the characteristics of a large eddy flow.Therefore,direct numerical simulation of N-S equations to obtain the turbulent flow field on the coarse grid could be realized.Numerical simulation of a two-dimensional flow over a backward-facing step at a Reynolds number Re=44000 was conducted using Euler-Lagrange finite element scheme based on the efficient operator-splitting method(OSFEM).The flow field was descretized by triangle meshes with 16669 nodes.The overall computational time only took 150 min on a PC.Both the characteristics of time-averaged and instantaneous turbulent flow were simultaneously obtained.The analysis showed that the calculated results were in good agreement with the test data.Hence,the DNS approach could become the reality to solve the complex turbulent flow with high Reynolds numbers in practical engineering.展开更多
文摘An idealized numerical wave flume has been established by finite element method on the bases of Navier Stokes equations through prescribing the appropriate boundary conditions for the open boundary,incident boundary,free surface and solid boundary in this paper.The characteristics of waves propagating over a step have been investigated by this numerical model.The breaker wave height is determined depending on the kinetic criterion.The numerical model is verified by laboratory experiments,and the empirical formula for the damping of wave height due to breaking is also given by experiments.
基金Project(51378510)supported by the National Natural Science Foundation of China
文摘Stability assessment of slopes has historically been performed assuming soils to be homogeneous in two-dimensional(2D) cases. In real cases, soils are usually inhomogeneous, and each slope collapse indicates a three-dimensional(3D) nature. Based on a 3D rotational failure mechanism, this work develops an approach to account for the impact of the vertical strength inhomogeneity on the 3D stability of stepped slopes. Seismic actions are taken into account by introducing the concept of a horizontal seismic coefficient. An upper-bound expression for stability factors is derived in the light of the kinematic approach, and the most critical solution is obtained from an optimization programming. In comparison with the previously published solutions, the validity of the proposed method is shown. A sensitivity analysis is carried out to discuss parametric effects on the stability of 3D stepped inhomogeneous slopes.
基金supported by Islamic Azad University,Malayer Branch,the special fund (No.2293),for basicresearch project
文摘One of the most important characters of blasting, a basic step of surface mining, is rock fragmentation. It directly effects on the costs of drilling and economics of the subsequent operations of loading, hauling and crushing in mines. Adaptive neuro-fuzzy inference system (ANFIS) and radial basis function (RBF) show potentials for modeling the behavior of complex nonlinear processes such as those involved in frag- mentation due to blasting of rocks. In this paper we developed ANFIS and RBF methods for modeling of sizing of rock fragmentation due to bench blasting by estimation of 80% passing size (Kso) of Golgohar iron ore mine of Sirjan, lran. Comparing the results of ANFIS and RBF models shows that although the sta- tistical parameters RBF model is acceptable but the ANFIS proposed model is superior and also simpler because the ANFIS model is constructed using only two input parameters while seven input parameters used for construction of the RBF model.
文摘Every compressor works in a limited operational range. Surge as one of the sources of this limitation has been studied for many years. In this research, an isolated blade row of compressor rotor is numerically modeled and solved. In order to improve operational limit and postpone the surge occurrence, a stepped blade of RAF6E with higher stall angle of attack is used to investigate the near stall flow behavior. In this study, several location of step on blades are tried and the results are compared with the case with no step on blades. It is shown that, as the step moves toward the leading edge of blades, the effect of delay on surge is reduced and even efficiency is also decreased significantly. By moving the step towards the trailing edge, surge is delayed due to the reattachment of flow after the step. Efficiency is also decreased but not in the order of the previous case.
基金supported by the Major National Science and Technology Projects of China (Grant No. 2012ZX07506003)the Public Research and Development Project for Water Resource (Grant No. 201001030)
文摘Direct numerical simulation(DNS) was performed for the first time to study the flow over a backward-facing step at a high Reynolds number on a coarse grid.The flow over backward-facing step is the typical turbulent flow controlled by large eddy,in which the effect of small eddy could be negligible as an approximation.The grid dimension could easily satisfy the resolution requirement to describe the characteristics of a large eddy flow.Therefore,direct numerical simulation of N-S equations to obtain the turbulent flow field on the coarse grid could be realized.Numerical simulation of a two-dimensional flow over a backward-facing step at a Reynolds number Re=44000 was conducted using Euler-Lagrange finite element scheme based on the efficient operator-splitting method(OSFEM).The flow field was descretized by triangle meshes with 16669 nodes.The overall computational time only took 150 min on a PC.Both the characteristics of time-averaged and instantaneous turbulent flow were simultaneously obtained.The analysis showed that the calculated results were in good agreement with the test data.Hence,the DNS approach could become the reality to solve the complex turbulent flow with high Reynolds numbers in practical engineering.