A simple approach has been developed to functionalize various substrates, such as gold and polyvinylchloride, with dopamine methacrylamide—a molecule with adhesive properties that mimic those of mussels—to produce a...A simple approach has been developed to functionalize various substrates, such as gold and polyvinylchloride, with dopamine methacrylamide—a molecule with adhesive properties that mimic those of mussels—to produce a versatile and general platform for subsequent surface modification. With active double bonds on the surface, various polymers, such as poly([2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide(PMEDSAH) and poly(N-vinylpyrrolidone)(PVP), can be grafted by conventional radical polymerization. Double bond surface functionalization and subsequent polymer grafting have been verified by static water contact angle, Fourier transform infrared–attenuated total reflectance(FTIR-ATR) spectroscopy and X-ray photoelectron spectroscopy(XPS) measurements. Protein adsorption assays showed that the polymermodified substrates have good protein-resistant properties. Considering the advantages of facility, versatility and substrate- independence, this method should be useful in designing functional interfaces for bioengineering applications.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars(21125418)the National Natural Science Foundation of China(21174098,21304062 and 21334004)+1 种基金the Natural Science Foundation of Jiangsu Higher Education Institutions of China(13KJB430020)the China Postdoctoral Science Foundation(2013M541714)
文摘A simple approach has been developed to functionalize various substrates, such as gold and polyvinylchloride, with dopamine methacrylamide—a molecule with adhesive properties that mimic those of mussels—to produce a versatile and general platform for subsequent surface modification. With active double bonds on the surface, various polymers, such as poly([2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide(PMEDSAH) and poly(N-vinylpyrrolidone)(PVP), can be grafted by conventional radical polymerization. Double bond surface functionalization and subsequent polymer grafting have been verified by static water contact angle, Fourier transform infrared–attenuated total reflectance(FTIR-ATR) spectroscopy and X-ray photoelectron spectroscopy(XPS) measurements. Protein adsorption assays showed that the polymermodified substrates have good protein-resistant properties. Considering the advantages of facility, versatility and substrate- independence, this method should be useful in designing functional interfaces for bioengineering applications.