Nickel is a heavy metal which has the potential threaten to human's health and attracts public concern recently. The carbonized leaf powder is expected as suitable adsorbent for Ni(II) removal became of the composi...Nickel is a heavy metal which has the potential threaten to human's health and attracts public concern recently. The carbonized leaf powder is expected as suitable adsorbent for Ni(II) removal became of the composition of some beneficial groups. In this work, carbonized leaf powder was evaluated for its adsorption performance towards Ni(II). According to the results, adsorbent component, dosage, initial solute concentration, solution pH, temperature and contact time can significantly affect the efficiency of Ni(II) removal. Sips model fits the test results best, and the adsorption capacity towards Ni(II) is determined around 37.62 mg/g. The thermodynamic behaviors reveal the endothermic and spontaneous nature of the adsorption. The free adsorption energy (fluctuate around 8 kJ/mol) predicted by D-R model indicates that the adsorption capacity originated from both physical and chemical adsorption. Room temperature (15-25 ℃) is suitable for Ni(II) removal as well as low energy consumption for temperature enhancement. Further conclusions about the mechanism of chemical adsorption are obtained through analysis of the FT-IR test and XRD spectra, which indicates that the adsorption process occurs predominantly between amine, carbonate, phosphate and nickel ions.展开更多
The present paper reports the results of an experimental investigation aimed at comparing aerodynamic perform- ance of three low-pressure turbine cascades for several Reynolds numbers under steady and unsteady inflows...The present paper reports the results of an experimental investigation aimed at comparing aerodynamic perform- ance of three low-pressure turbine cascades for several Reynolds numbers under steady and unsteady inflows. This study is focused on finding design criteria useful to reduce both profile and secondary losses in the aero-engine LP turbine for the different flight conditions. The baseline blade cascade, characterized by a standard aerodynamic loading (Zw=1.03), has been compared with two Ultra-High-Lift profiles with the same Zweifel number (Zw=1.3 for both cascades), but different velocity peak positions, leading to front and mid-loaded blade cascade configurations. The aerodynamic flow fields downstream of the cascades have been experimentally in- vestigated for Reynolds numbers in the range 70000〈Re〈300000, where lower and upper limits are typical of cruise and take-off/landing conditions, respectively. The effects induced by the incoming wakes at the reduced frequency ./+=0.62 on both profile and secondary flow losses for the three different cascade designs have been studied. Total pressure and velocity distributions have been measured by means of a miniaturized 5-hole probe in a tangential plane downstream of the cascade for both inflow conditions. The analysis of the results allows the evaluation of the aerodynamic performance of the blade cascades in terms of profile and secondary losses and the understanding of the effects of loading distribution and Zweifel number on secondary flows. When operating un- der unsteady inflow, contrarily to the steady case, the mid-loaded cascade has been found to be characterized by the lowest profile and secondary losses, making it the most attractive solution for the design of blades working in real conditions where unsteady inflow effects are present.展开更多
Protic ionic liquid (PIL) triethylammonium acetate was prepared by mixing equimolar amounts of acetic acid and triethylamine, and then studied using the combination of the Attenuated Total Reflection Fourier Transform...Protic ionic liquid (PIL) triethylammonium acetate was prepared by mixing equimolar amounts of acetic acid and triethylamine, and then studied using the combination of the Attenuated Total Reflection Fourier Transform Infrared spectroscopy, in-situ infrared spectroscopy, pH, and conductivity titration measurements. It was found that the equimolar synthesized triethylammonium acetate was separated into two layers, which suggesting that there were both chemical and phase equilibrium in this solution. Molecular species could be directly observed in the IR spectra over the range of 1200-1800 cm-1 and also checked by 1H NMR. Based on analysis, the upper layer was rich in amine with little acid and PIL, and the down layer was rich in PIL with residual acetic acid and amine. And single PIL-rich layer could be separated into two layers again when the mole ratio of newly added triethyamine to the theoretical produced triethylammonium acetate reached 0.12.展开更多
基金Projects(5117916851308310)supported by the National Natural Science Foundation of China+1 种基金Project(LQ13E080007)supported by Zhejiang Provincial Natural Science Foundation,ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Jiangsu Province,China
文摘Nickel is a heavy metal which has the potential threaten to human's health and attracts public concern recently. The carbonized leaf powder is expected as suitable adsorbent for Ni(II) removal became of the composition of some beneficial groups. In this work, carbonized leaf powder was evaluated for its adsorption performance towards Ni(II). According to the results, adsorbent component, dosage, initial solute concentration, solution pH, temperature and contact time can significantly affect the efficiency of Ni(II) removal. Sips model fits the test results best, and the adsorption capacity towards Ni(II) is determined around 37.62 mg/g. The thermodynamic behaviors reveal the endothermic and spontaneous nature of the adsorption. The free adsorption energy (fluctuate around 8 kJ/mol) predicted by D-R model indicates that the adsorption capacity originated from both physical and chemical adsorption. Room temperature (15-25 ℃) is suitable for Ni(II) removal as well as low energy consumption for temperature enhancement. Further conclusions about the mechanism of chemical adsorption are obtained through analysis of the FT-IR test and XRD spectra, which indicates that the adsorption process occurs predominantly between amine, carbonate, phosphate and nickel ions.
文摘The present paper reports the results of an experimental investigation aimed at comparing aerodynamic perform- ance of three low-pressure turbine cascades for several Reynolds numbers under steady and unsteady inflows. This study is focused on finding design criteria useful to reduce both profile and secondary losses in the aero-engine LP turbine for the different flight conditions. The baseline blade cascade, characterized by a standard aerodynamic loading (Zw=1.03), has been compared with two Ultra-High-Lift profiles with the same Zweifel number (Zw=1.3 for both cascades), but different velocity peak positions, leading to front and mid-loaded blade cascade configurations. The aerodynamic flow fields downstream of the cascades have been experimentally in- vestigated for Reynolds numbers in the range 70000〈Re〈300000, where lower and upper limits are typical of cruise and take-off/landing conditions, respectively. The effects induced by the incoming wakes at the reduced frequency ./+=0.62 on both profile and secondary flow losses for the three different cascade designs have been studied. Total pressure and velocity distributions have been measured by means of a miniaturized 5-hole probe in a tangential plane downstream of the cascade for both inflow conditions. The analysis of the results allows the evaluation of the aerodynamic performance of the blade cascades in terms of profile and secondary losses and the understanding of the effects of loading distribution and Zweifel number on secondary flows. When operating un- der unsteady inflow, contrarily to the steady case, the mid-loaded cascade has been found to be characterized by the lowest profile and secondary losses, making it the most attractive solution for the design of blades working in real conditions where unsteady inflow effects are present.
基金supported by the National Natural Science Foundation of China (20990221, 20976151)
文摘Protic ionic liquid (PIL) triethylammonium acetate was prepared by mixing equimolar amounts of acetic acid and triethylamine, and then studied using the combination of the Attenuated Total Reflection Fourier Transform Infrared spectroscopy, in-situ infrared spectroscopy, pH, and conductivity titration measurements. It was found that the equimolar synthesized triethylammonium acetate was separated into two layers, which suggesting that there were both chemical and phase equilibrium in this solution. Molecular species could be directly observed in the IR spectra over the range of 1200-1800 cm-1 and also checked by 1H NMR. Based on analysis, the upper layer was rich in amine with little acid and PIL, and the down layer was rich in PIL with residual acetic acid and amine. And single PIL-rich layer could be separated into two layers again when the mole ratio of newly added triethyamine to the theoretical produced triethylammonium acetate reached 0.12.