To explore the effects of airfoil-probe tubes and its installment position on the flow field of the compressor cas- cade, and find out the mechanism that how the airfoil-probes affect the aerodynamic characteristics o...To explore the effects of airfoil-probe tubes and its installment position on the flow field of the compressor cas- cade, and find out the mechanism that how the airfoil-probes affect the aerodynamic characteristics of the com- pressor cascade, this paper performed both numerical and experimcntal works on the same compressor cascade. The experiment mainly focused on the cases of low Mach number (Ma = 0.1), and cases with different Mach numbers (0.1, 0.3, 0.7) and different incidence angles (-5, 0, 5) are investigated by the numerical method. The case without the airfoil-probe tube was referenced as the baseline, and other three cases with the airfoil-probe tubes installed in different chordwise positions O0%, 50%, 70% of the chord length) were studied. The diameter of the airfoil-probe tube is 3ram, which is configured as 300% amplification of some particular airfoil-probe ac- cording to the geometrical similarity principle. The results show that the airfoil-probe tubes have a negative in- fluenc~ on the flow capacity of the cascade at all investigation points. The separations and the large scale stream- wise vortices that induced by the airfoil-probe tube on the pressure side cause most the losses at the high Mach number. The influence of the airfoil-probe tube on the flow field in the vicinity of the pressure side surface is lo- cal separation at the low Mach number. The airfoil-probe tubes also have a clearly effect on the leakage flow. It decreases the mass flow of the leakage flow and weakens the intensity of the leakage vortex, but enlarges the in- fluence area. The total pressure loss of the case that the tube is installed at the half chordwise position is generally lower than other cases especially at the high Mach number, it can even decrease the losses compared with the ba- sic case.展开更多
We present an improved lattice Boltzmann(LB) model for thermal liquid-vapor system.In the new model,the Windowed Fast Fourier Transform(WFFT) and its inverse are used to calculate both the convection term and the exte...We present an improved lattice Boltzmann(LB) model for thermal liquid-vapor system.In the new model,the Windowed Fast Fourier Transform(WFFT) and its inverse are used to calculate both the convection term and the external force term of the LB equation.By adopting the WFFT scheme,Gibbs oscillations can be damped effectively in unsmooth regions while high resolution feature of the spectral method can be retained in smooth regions.As a result,spatial discretization errors are dramatically decreased,conservation of the total energy is much better preserved,and the spurious velocities near the liquid-vapor interface are significantly reduced.The high resolution,together with the low complexity of the WFFT approach,endows the proposed method with considerable potential for studying a wide class of problems in the field of multiphase flows.展开更多
基金funded by the National Natural Science Foundation of China,Grant No.51161130525supported by the 111 Project,No.B07009
文摘To explore the effects of airfoil-probe tubes and its installment position on the flow field of the compressor cas- cade, and find out the mechanism that how the airfoil-probes affect the aerodynamic characteristics of the com- pressor cascade, this paper performed both numerical and experimcntal works on the same compressor cascade. The experiment mainly focused on the cases of low Mach number (Ma = 0.1), and cases with different Mach numbers (0.1, 0.3, 0.7) and different incidence angles (-5, 0, 5) are investigated by the numerical method. The case without the airfoil-probe tube was referenced as the baseline, and other three cases with the airfoil-probe tubes installed in different chordwise positions O0%, 50%, 70% of the chord length) were studied. The diameter of the airfoil-probe tube is 3ram, which is configured as 300% amplification of some particular airfoil-probe ac- cording to the geometrical similarity principle. The results show that the airfoil-probe tubes have a negative in- fluenc~ on the flow capacity of the cascade at all investigation points. The separations and the large scale stream- wise vortices that induced by the airfoil-probe tube on the pressure side cause most the losses at the high Mach number. The influence of the airfoil-probe tube on the flow field in the vicinity of the pressure side surface is lo- cal separation at the low Mach number. The airfoil-probe tubes also have a clearly effect on the leakage flow. It decreases the mass flow of the leakage flow and weakens the intensity of the leakage vortex, but enlarges the in- fluence area. The total pressure loss of the case that the tube is installed at the half chordwise position is generally lower than other cases especially at the high Mach number, it can even decrease the losses compared with the ba- sic case.
基金Supported by the Science Foundations of Laboratory of Computational Physics and China Academy of Engineering Physics under Grant Nos.2009A0102005 and 2011A0201002National Natural Science Foundation of China under Grant Nos.11075021,91130020,11074300, and 10874242+2 种基金Fundamental research funds for the central university under Grant No.2010YS03Technology Support Program of LangFang under Grant Nos.2010011030,201101118/21/23/24Teaching and Research Foundation of NCIAE under Grant Nos.JY-2011-027-Y and JY-2011-028-Y
文摘We present an improved lattice Boltzmann(LB) model for thermal liquid-vapor system.In the new model,the Windowed Fast Fourier Transform(WFFT) and its inverse are used to calculate both the convection term and the external force term of the LB equation.By adopting the WFFT scheme,Gibbs oscillations can be damped effectively in unsmooth regions while high resolution feature of the spectral method can be retained in smooth regions.As a result,spatial discretization errors are dramatically decreased,conservation of the total energy is much better preserved,and the spurious velocities near the liquid-vapor interface are significantly reduced.The high resolution,together with the low complexity of the WFFT approach,endows the proposed method with considerable potential for studying a wide class of problems in the field of multiphase flows.