According to the current research status of component retrieval, the component description model based on facet classification is improved by adding semantic features. Furthermore, the component retrieval process mode...According to the current research status of component retrieval, the component description model based on facet classification is improved by adding semantic features. Furthermore, the component retrieval process model is put forward by combining the domain ontology with the relative concept match algorithm. A detailed illustration of a component reasoning engine and a component classification engine is given and the component classification algorithm is provided by using the Naive Bayes algorithm based on domain ontology. The experimental results show that the recall ratio and the precision ratio are obviously improved by using the method based on semantics, and demonstrate the feasibility and effectiveness of the proposed method.展开更多
An effective domain ontology automatically constructed is proposed in this paper. The main concept is using the Formal Concept Analysis to automatically establish domain ontology. Finally, the ontology is acted as the...An effective domain ontology automatically constructed is proposed in this paper. The main concept is using the Formal Concept Analysis to automatically establish domain ontology. Finally, the ontology is acted as the base for the Naive Bayes classifier to approve the effectiveness of the domain ontology for document classification. The 1752 documents divided into 10 categories are used to assess the effectiveness of the ontology, where 1252 and 500 documents are the training and testing documents, respectively. The Fl-measure is as the assessment criteria and the following three results are obtained. The average recall of Naive Bayes classifier is 0.94. Therefore, in recall, the performance of Naive Bayes classifier is excellent based on the automatically constructed ontology. The average precision of Naive Bayes classifier is 0.81. Therefore, in precision, the performance of Naive Bayes classifier is gored based on the automatically constructed ontology. The average Fl-measure for 10 categories by Naive Bayes classifier is 0.86. Therefore, the performance of Naive Bayes classifier is effective based on the automatically constructed ontology in the point of F 1-measure. Thus, the domain ontology automatically constructed could indeed be acted as the document categories to reach the effectiveness for document classification.展开更多
基金The National Natural Science Foundation of China(No60072006)
文摘According to the current research status of component retrieval, the component description model based on facet classification is improved by adding semantic features. Furthermore, the component retrieval process model is put forward by combining the domain ontology with the relative concept match algorithm. A detailed illustration of a component reasoning engine and a component classification engine is given and the component classification algorithm is provided by using the Naive Bayes algorithm based on domain ontology. The experimental results show that the recall ratio and the precision ratio are obviously improved by using the method based on semantics, and demonstrate the feasibility and effectiveness of the proposed method.
文摘An effective domain ontology automatically constructed is proposed in this paper. The main concept is using the Formal Concept Analysis to automatically establish domain ontology. Finally, the ontology is acted as the base for the Naive Bayes classifier to approve the effectiveness of the domain ontology for document classification. The 1752 documents divided into 10 categories are used to assess the effectiveness of the ontology, where 1252 and 500 documents are the training and testing documents, respectively. The Fl-measure is as the assessment criteria and the following three results are obtained. The average recall of Naive Bayes classifier is 0.94. Therefore, in recall, the performance of Naive Bayes classifier is excellent based on the automatically constructed ontology. The average precision of Naive Bayes classifier is 0.81. Therefore, in precision, the performance of Naive Bayes classifier is gored based on the automatically constructed ontology. The average Fl-measure for 10 categories by Naive Bayes classifier is 0.86. Therefore, the performance of Naive Bayes classifier is effective based on the automatically constructed ontology in the point of F 1-measure. Thus, the domain ontology automatically constructed could indeed be acted as the document categories to reach the effectiveness for document classification.