The purification process of total flavones of ginkgo leaves by resin HZ-841 from ethanol extract was studied. First, the total flavone was extracted from the defatted powder of ginkgo L. biloba leaves. Effects of solv...The purification process of total flavones of ginkgo leaves by resin HZ-841 from ethanol extract was studied. First, the total flavone was extracted from the defatted powder of ginkgo L. biloba leaves. Effects of solvents and operation conditions were examined to get a relative high yield and purity in this step. The crude extract was further purified by resin HZ-841. Both adsorption and elution process were studied to obtain an optimized conditions, i.e., pH, flow rate, concentration. A yellow powder was obtained, of which 37.3% was flavones, obviously higher than the basic international standard of 24%.展开更多
The influences of the internal and external outlet angles on separation performance and flow field are compared and analyzed. Two arc functions are employed for controlling the internal and external angles. The separa...The influences of the internal and external outlet angles on separation performance and flow field are compared and analyzed. Two arc functions are employed for controlling the internal and external angles. The separation process in the cyclone tube is calculated by using two-fluid model based on the Eulerian-Eulerian method.The results show that the structure with the internal outlet angle smaller than the external one is more beneficial to the separation performance. It is found that the small internal angle can help increase the swirl number,while the small external angle can help increase the friction coefficient. Several groups of numerical simulations are conducted for the air intake unit of the gas turbine in practice. When the internal outlet angle is 35° and the external outlet angle is 40°,the blade has sufficient cyclone strength and the separation rate of particles with diameters of 10—100 μm is between70%—98%. The small blade angle is more conducive to the separation of fine particles,leading to violent collision of large particles on the outer wall and reduction of separation efficiency. In addition,reducing the external angle is conducive to the discharge of large particles.展开更多
Water hyacinth is a raw material for long-term sustainable production of cellulosics ethanol. In this study, the acid pretreatment and enzymatic hydrolysis were used to evaluate to produce more sugar, to be fermented ...Water hyacinth is a raw material for long-term sustainable production of cellulosics ethanol. In this study, the acid pretreatment and enzymatic hydrolysis were used to evaluate to produce more sugar, to be fermented to ethanol. Separated hydrolysis and fermentation (SHF) studies were carried out to produce ethanol from water hyacinth leaves. Dilute sulfuric acid pretreatment and enzymatic hydrolysis were conducted to select the optimum pretreatment conditions. The optimum pretreatment conditions included T = 135 ℃, t = 30 min, and sulfuric acid concentration = 0.1 M. The residue was enzymatically hydrolyzed using the mixture of enzymes cellulase, xylanase and pectinase. The maximum enzymatic saccharification of cellulosic material (76.8%) was achieved. SHF by mono-culture of Saccharomyces cerevisiae KM1195 achieved the highest yields of ethanol. Furthermore, ethanol production was accomplished with the co-culture ofS. cerevisiae TISTR5048 and Candida tropicalis TISTR5045 which produced the highest increase in ethanol Yield. In this case, the ethanol concentration of 3.42 (g/L), percentage of the theoretical ethanol yield of 99.9%, the ethanol yield of 0.27 g/g and the productivity of 0.22 g/L/h were obtained. This suggested that mild acid pretreatment and co-cultureare promising methods to improve enzymatic hydrolysis and ethanol production from water hyacinth.展开更多
Design method for a mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. The...Design method for a mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Then, a semi-open impeller for the mini centrifugal pump with 55mm impeller diameter is adopted in this research to take simplicity and maintenance into consideration. Splitter blades are adopted in this research to improve the performance and internal flow condition of mini centrifugal pump having large blade outlet angle. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on the performance and internal flow condition of the mini centrifugal pump. A three dimensional steady numerical flow analysis is conducted to analyze rotor, volute efficiency and loss caused by a vortex. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the effect of the splitter blades. Flow condition at outlet of the rotor becomes uniform and back flow regions are suppressed in the case with the splitter blades.Further, the volute efficiency increases and the vortex loss decreases. In the present paper, the performance of the mini centrifugal pump is shown and the flow condition is clarified with the results of the experiment and the numerical flow analysis. Furthermore, the performance analyses of the mini centrifugal pumps with and without the splitter blades are conducted.展开更多
文摘The purification process of total flavones of ginkgo leaves by resin HZ-841 from ethanol extract was studied. First, the total flavone was extracted from the defatted powder of ginkgo L. biloba leaves. Effects of solvents and operation conditions were examined to get a relative high yield and purity in this step. The crude extract was further purified by resin HZ-841. Both adsorption and elution process were studied to obtain an optimized conditions, i.e., pH, flow rate, concentration. A yellow powder was obtained, of which 37.3% was flavones, obviously higher than the basic international standard of 24%.
文摘The influences of the internal and external outlet angles on separation performance and flow field are compared and analyzed. Two arc functions are employed for controlling the internal and external angles. The separation process in the cyclone tube is calculated by using two-fluid model based on the Eulerian-Eulerian method.The results show that the structure with the internal outlet angle smaller than the external one is more beneficial to the separation performance. It is found that the small internal angle can help increase the swirl number,while the small external angle can help increase the friction coefficient. Several groups of numerical simulations are conducted for the air intake unit of the gas turbine in practice. When the internal outlet angle is 35° and the external outlet angle is 40°,the blade has sufficient cyclone strength and the separation rate of particles with diameters of 10—100 μm is between70%—98%. The small blade angle is more conducive to the separation of fine particles,leading to violent collision of large particles on the outer wall and reduction of separation efficiency. In addition,reducing the external angle is conducive to the discharge of large particles.
文摘Water hyacinth is a raw material for long-term sustainable production of cellulosics ethanol. In this study, the acid pretreatment and enzymatic hydrolysis were used to evaluate to produce more sugar, to be fermented to ethanol. Separated hydrolysis and fermentation (SHF) studies were carried out to produce ethanol from water hyacinth leaves. Dilute sulfuric acid pretreatment and enzymatic hydrolysis were conducted to select the optimum pretreatment conditions. The optimum pretreatment conditions included T = 135 ℃, t = 30 min, and sulfuric acid concentration = 0.1 M. The residue was enzymatically hydrolyzed using the mixture of enzymes cellulase, xylanase and pectinase. The maximum enzymatic saccharification of cellulosic material (76.8%) was achieved. SHF by mono-culture of Saccharomyces cerevisiae KM1195 achieved the highest yields of ethanol. Furthermore, ethanol production was accomplished with the co-culture ofS. cerevisiae TISTR5048 and Candida tropicalis TISTR5045 which produced the highest increase in ethanol Yield. In this case, the ethanol concentration of 3.42 (g/L), percentage of the theoretical ethanol yield of 99.9%, the ethanol yield of 0.27 g/g and the productivity of 0.22 g/L/h were obtained. This suggested that mild acid pretreatment and co-cultureare promising methods to improve enzymatic hydrolysis and ethanol production from water hyacinth.
文摘Design method for a mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Then, a semi-open impeller for the mini centrifugal pump with 55mm impeller diameter is adopted in this research to take simplicity and maintenance into consideration. Splitter blades are adopted in this research to improve the performance and internal flow condition of mini centrifugal pump having large blade outlet angle. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on the performance and internal flow condition of the mini centrifugal pump. A three dimensional steady numerical flow analysis is conducted to analyze rotor, volute efficiency and loss caused by a vortex. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the effect of the splitter blades. Flow condition at outlet of the rotor becomes uniform and back flow regions are suppressed in the case with the splitter blades.Further, the volute efficiency increases and the vortex loss decreases. In the present paper, the performance of the mini centrifugal pump is shown and the flow condition is clarified with the results of the experiment and the numerical flow analysis. Furthermore, the performance analyses of the mini centrifugal pumps with and without the splitter blades are conducted.