A detail research has been completed for calculation of end wall boundary layers within an axial compressor cascade.A new calculation model for blade force defect is proposed,which is associated with development of pr...A detail research has been completed for calculation of end wall boundary layers within an axial compressor cascade.A new calculation model for blade force defect is proposed,which is associated with development of primary flow and transverse flow.A unique feature of this method lies not only in capability to calculate the development of end wall boundary layers inside the cascade passage without any assumption about the exit of cascade,but also in ability to take into account the influecnce of its tip clearance.The calculational results of three heavily loaded cascades show that this model is superior to other existing models.展开更多
[Objective] The experiment aimed to study the growth characteristics of hydroponic bowl lotus. [Method] The lotus variety Hongxia was chosen as the experimental material. Two treatments, hydroponics and soil culture w...[Objective] The experiment aimed to study the growth characteristics of hydroponic bowl lotus. [Method] The lotus variety Hongxia was chosen as the experimental material. Two treatments, hydroponics and soil culture were set to measure their photosynthetic indices, chlorophyll content and root vigor, and to observe their leaf tissue structure and stomatal characteristics. [Result] The findings indicated that there are no differences in the leaf physiological indices between bowl lotus under hydroponics and soil culture, while the leaf stomata of hydroponic bowl lotus is bigger and its amount is larger than that of soil-culture bowl lotus. At the same time, the ratio of the palisade tissue thickness to spongy tissue thickness is small,and its leaf tissue structure is loose. The root vigor of hydroponic bowl lotus reached its summit earlier, then began to drop. Whereas, the root activity of soil-culture lotus sustained increasing, with vigorous growth. [Conclusion] Therefore, it indicated that hydroponic bowl lotus can adapt to the aquatic-culture environment well and quickly, meanwhile, it also enters into its aging period quickly and its growth cycle gets shorter.展开更多
The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which compris...The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which comprises an aerodynamic part to calculate the aerodynamic loads and a structural part to determine the structural dynamic responses, is established to describe the classical flutter of the blades. For the aerodynamic part, Theodorsen unsteady aerodynamics model is used. For the structural part, Lagrange’s equation is employed. The flutter speed is determined by introducing “V–g” method to the aeroelastic model, which converts the issue of classical flutter speed determination into an eigenvalue problem. Furthermore, the time domain aeroelastic response of the wind turbine blade section is obtained with employing Runge-Kutta method. The results show that four cases (i.e., reducing the blade torsional stiffness, moving the center of gravity or the elastic axis towards the trailing edge of the section, and placing the turbine in high air density area) will decrease the flutter speed. Therefore, the judicious selection of the four parameters (the torsional stiffness, the chordwise position of the center of gravity, the elastic axis position and air density) can increase the relative inflow speed at the blade section associated with the onset of flutter.展开更多
文摘A detail research has been completed for calculation of end wall boundary layers within an axial compressor cascade.A new calculation model for blade force defect is proposed,which is associated with development of primary flow and transverse flow.A unique feature of this method lies not only in capability to calculate the development of end wall boundary layers inside the cascade passage without any assumption about the exit of cascade,but also in ability to take into account the influecnce of its tip clearance.The calculational results of three heavily loaded cascades show that this model is superior to other existing models.
基金Supported by Key Scientific and Technological Project of Henan Province(072102150001)~~
文摘[Objective] The experiment aimed to study the growth characteristics of hydroponic bowl lotus. [Method] The lotus variety Hongxia was chosen as the experimental material. Two treatments, hydroponics and soil culture were set to measure their photosynthetic indices, chlorophyll content and root vigor, and to observe their leaf tissue structure and stomatal characteristics. [Result] The findings indicated that there are no differences in the leaf physiological indices between bowl lotus under hydroponics and soil culture, while the leaf stomata of hydroponic bowl lotus is bigger and its amount is larger than that of soil-culture bowl lotus. At the same time, the ratio of the palisade tissue thickness to spongy tissue thickness is small,and its leaf tissue structure is loose. The root vigor of hydroponic bowl lotus reached its summit earlier, then began to drop. Whereas, the root activity of soil-culture lotus sustained increasing, with vigorous growth. [Conclusion] Therefore, it indicated that hydroponic bowl lotus can adapt to the aquatic-culture environment well and quickly, meanwhile, it also enters into its aging period quickly and its growth cycle gets shorter.
基金Project(2015B37714)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(51605005)supported by the National Natural Science Foundation of China+1 种基金Project(ZK16-03-03)supported by the Open Foundation of Jiangsu Wind Technology Center,ChinaProject([2013]56)supported by the First Group of 2011 Plan of Jiangsu Province,China
文摘The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which comprises an aerodynamic part to calculate the aerodynamic loads and a structural part to determine the structural dynamic responses, is established to describe the classical flutter of the blades. For the aerodynamic part, Theodorsen unsteady aerodynamics model is used. For the structural part, Lagrange’s equation is employed. The flutter speed is determined by introducing “V–g” method to the aeroelastic model, which converts the issue of classical flutter speed determination into an eigenvalue problem. Furthermore, the time domain aeroelastic response of the wind turbine blade section is obtained with employing Runge-Kutta method. The results show that four cases (i.e., reducing the blade torsional stiffness, moving the center of gravity or the elastic axis towards the trailing edge of the section, and placing the turbine in high air density area) will decrease the flutter speed. Therefore, the judicious selection of the four parameters (the torsional stiffness, the chordwise position of the center of gravity, the elastic axis position and air density) can increase the relative inflow speed at the blade section associated with the onset of flutter.