期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于1D-CNN的植被等效水厚度反演研究
1
作者 赵强 曹骁 《安徽农业科学》 CAS 2023年第18期1-5,共5页
[目的]为实现高等级公路路域植被等效水厚度(EWT)快速、连续、高效监测需求。[方法]以叶片尺度高光谱为数据源,首先对辐射传输模型PROSPECT-D模拟数据和实测光谱数据分别进行标准正态变量变换、归一化等光谱变换。应用相关性分析提取各... [目的]为实现高等级公路路域植被等效水厚度(EWT)快速、连续、高效监测需求。[方法]以叶片尺度高光谱为数据源,首先对辐射传输模型PROSPECT-D模拟数据和实测光谱数据分别进行标准正态变量变换、归一化等光谱变换。应用相关性分析提取各变换光谱特征波段,基于PROSPECT-D模拟数据特征波段分别构建一维卷积神经网络(1D-CNN)、支持向量机路域植被叶片EWT反演模型,并用实测光谱数据进行模型验证。[结果]植被EWT最优反演路径为对光谱进行归一化预处理后,构建PROSPECT-D与1D-CNN组合模型,测试决定系数(R2c)为0.645、均方根误差(RMSEC)为2.367,精度较高,满足应用需求。[结论]该研究为利用高光谱数据对南方丘陵地区高等级公路植被EWT定量反演奠定了基础。 展开更多
关键词 辐射传输模型 PROSPECT-D 叶片等效水厚度 光谱变换 一维卷积神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部