期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于1D-CNN的植被等效水厚度反演研究
1
作者
赵强
曹骁
《安徽农业科学》
CAS
2023年第18期1-5,共5页
[目的]为实现高等级公路路域植被等效水厚度(EWT)快速、连续、高效监测需求。[方法]以叶片尺度高光谱为数据源,首先对辐射传输模型PROSPECT-D模拟数据和实测光谱数据分别进行标准正态变量变换、归一化等光谱变换。应用相关性分析提取各...
[目的]为实现高等级公路路域植被等效水厚度(EWT)快速、连续、高效监测需求。[方法]以叶片尺度高光谱为数据源,首先对辐射传输模型PROSPECT-D模拟数据和实测光谱数据分别进行标准正态变量变换、归一化等光谱变换。应用相关性分析提取各变换光谱特征波段,基于PROSPECT-D模拟数据特征波段分别构建一维卷积神经网络(1D-CNN)、支持向量机路域植被叶片EWT反演模型,并用实测光谱数据进行模型验证。[结果]植被EWT最优反演路径为对光谱进行归一化预处理后,构建PROSPECT-D与1D-CNN组合模型,测试决定系数(R2c)为0.645、均方根误差(RMSEC)为2.367,精度较高,满足应用需求。[结论]该研究为利用高光谱数据对南方丘陵地区高等级公路植被EWT定量反演奠定了基础。
展开更多
关键词
辐射传输模型
PROSPECT-D
叶片等效水厚度
光谱变换
一维卷积神经网络
下载PDF
职称材料
题名
基于1D-CNN的植被等效水厚度反演研究
1
作者
赵强
曹骁
机构
湖南省第三测绘院
湖南省地理空间信息工程技术研究中心
地理信息安全与应用湖南省工程研究中心
湖南省第一测绘院
出处
《安徽农业科学》
CAS
2023年第18期1-5,共5页
基金
2022年湖南省自然资源重大科技研究项目“新型基础地理信息资源获取与应用关键技术研究”(湘自资科[2022]3号)。
文摘
[目的]为实现高等级公路路域植被等效水厚度(EWT)快速、连续、高效监测需求。[方法]以叶片尺度高光谱为数据源,首先对辐射传输模型PROSPECT-D模拟数据和实测光谱数据分别进行标准正态变量变换、归一化等光谱变换。应用相关性分析提取各变换光谱特征波段,基于PROSPECT-D模拟数据特征波段分别构建一维卷积神经网络(1D-CNN)、支持向量机路域植被叶片EWT反演模型,并用实测光谱数据进行模型验证。[结果]植被EWT最优反演路径为对光谱进行归一化预处理后,构建PROSPECT-D与1D-CNN组合模型,测试决定系数(R2c)为0.645、均方根误差(RMSEC)为2.367,精度较高,满足应用需求。[结论]该研究为利用高光谱数据对南方丘陵地区高等级公路植被EWT定量反演奠定了基础。
关键词
辐射传输模型
PROSPECT-D
叶片等效水厚度
光谱变换
一维卷积神经网络
Keywords
Radiation transfer model
PROSPECT-D
Blade equivalent water thickness
Spectral transformation
One-dimensional convolutional neural network(1D-CNN)
分类号
P237 [天文地球—摄影测量与遥感]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于1D-CNN的植被等效水厚度反演研究
赵强
曹骁
《安徽农业科学》
CAS
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部