Angiosperms need light to synthesize chlorophyll, but lotus (Nelumbo nucifera Gaertn.) embryo was suspected to have the ability to form chlorophyll in the dark because lotus embryo can turn into green under the covera...Angiosperms need light to synthesize chlorophyll, but lotus (Nelumbo nucifera Gaertn.) embryo was suspected to have the ability to form chlorophyll in the dark because lotus embryo can turn into green under the coverage of four layers of integuments (cotyledon, seed coat, pericarp, lotus pod) which were thought impossible for light to pass through. The authors excluded this possibility based on two experimental results: First, enclosing the young lotus pod with aluminium foil, the growth of louts embryo continued, but the chlorophyll formation was seriously inhibited. A lot of protochlorophyllide, chlorophyll precursor, were accumulated, most of which were combined with LPOR (light dependent protochlorophyllide oxidoreductase). Second, DPOR (dark or light-independent protochlorophyllide oxidoreductase) was the enzyme necessary for chlorophyll synthesis in the dark. The genes encoding DPOR were conservative in many species, but no homologues could be found in lotus genome. Taken together, authers' results clearly demonstrated that lotus embryo synthesizes chlorophyll only through the light-dependent pathway.展开更多
The responses of photosynthesis of phosphoenopyruvate carboxylase (PEPC), pyrurate dikinase (PPDK), NADP-malic enzyme (NADP-ME) and PPDK+PEPC transgenic rice (Oryza saltiva L.) plant to light, temperature, CO 2 and t...The responses of photosynthesis of phosphoenopyruvate carboxylase (PEPC), pyrurate dikinase (PPDK), NADP-malic enzyme (NADP-ME) and PPDK+PEPC transgenic rice (Oryza saltiva L.) plant to light, temperature, CO 2 and the characteristics of chlorophyll fluorescence under photoinhibition conditions were studied. The results were as follows: 1. The light-saturated photosynthetic rates of transgenic rice plants were higher than that of wild type, in which the light-saturated point of PEPC and PPDK+PEPC transgenic rice plants was 200 μmol·m -2·s -1 higher than that of untransformed rice and the light-saturated photosynthetic rates were 51.6% and 58.5% respectively. The carboxylation efficiency of PEPC transgenic rice plant increased by 49.3% and the CO 2 compensation point decreased by 26.2% than that of untransformed rice. Under high temperature (35 ℃), the photosynthetic rate of PEPC transgenic rice plant was higher over 17.5% than that of untransformed rice. 2. On the 8th day after photoinhibition treatment, the PSⅡ photochemical efficiency (F v/F m) and photochemical quenching (qP) of PEPC and PPDK+PEPC transgenic rice plants decreased by about 20%-30% while the non-photochemical quenching (qN) increased by approximately 30%. But F v/F m and qP of untransformed rice decreased by over 50% while qN increased by less than 10%. The result suggested that transgenic rice plants were more tolerant to photoinhibition.展开更多
Levels of T1 (Thallium) in soil from 0 (control) to 50 μg/L through 0.2, 0.5, 1 and 2.5μg/L were directly and positively correlated to levels of T1 in plant tissue, the accumulation being maximum in roots, inter...Levels of T1 (Thallium) in soil from 0 (control) to 50 μg/L through 0.2, 0.5, 1 and 2.5μg/L were directly and positively correlated to levels of T1 in plant tissue, the accumulation being maximum in roots, intermediate in leaves and minimum in stems. Thallium, especially at higher concentrations, adversely affected photosynthesis (as judged based on chlorophyll fluorescence parameters), suggesting inhibition of photo-activation of PSII (Photosystems II), and also decreased the rate of photosynthesis, the rate of transpiration and stomatal conductivity drastically. Exposure to TI also increased the activity of CAT (Catalase) (except at 1 μg/L) and POD (Peroxidase) (except at 0.2 μg/L), suggesting that the antioxidant systems in Coix lacryma-jobi were the main contributors of CAT and SOD (Superoxide Dismutase) and that the tolerance of C. lacryma-jobi to T1 is mainly due to this induced antioxidant machinery.展开更多
文摘Angiosperms need light to synthesize chlorophyll, but lotus (Nelumbo nucifera Gaertn.) embryo was suspected to have the ability to form chlorophyll in the dark because lotus embryo can turn into green under the coverage of four layers of integuments (cotyledon, seed coat, pericarp, lotus pod) which were thought impossible for light to pass through. The authors excluded this possibility based on two experimental results: First, enclosing the young lotus pod with aluminium foil, the growth of louts embryo continued, but the chlorophyll formation was seriously inhibited. A lot of protochlorophyllide, chlorophyll precursor, were accumulated, most of which were combined with LPOR (light dependent protochlorophyllide oxidoreductase). Second, DPOR (dark or light-independent protochlorophyllide oxidoreductase) was the enzyme necessary for chlorophyll synthesis in the dark. The genes encoding DPOR were conservative in many species, but no homologues could be found in lotus genome. Taken together, authers' results clearly demonstrated that lotus embryo synthesizes chlorophyll only through the light-dependent pathway.
文摘The responses of photosynthesis of phosphoenopyruvate carboxylase (PEPC), pyrurate dikinase (PPDK), NADP-malic enzyme (NADP-ME) and PPDK+PEPC transgenic rice (Oryza saltiva L.) plant to light, temperature, CO 2 and the characteristics of chlorophyll fluorescence under photoinhibition conditions were studied. The results were as follows: 1. The light-saturated photosynthetic rates of transgenic rice plants were higher than that of wild type, in which the light-saturated point of PEPC and PPDK+PEPC transgenic rice plants was 200 μmol·m -2·s -1 higher than that of untransformed rice and the light-saturated photosynthetic rates were 51.6% and 58.5% respectively. The carboxylation efficiency of PEPC transgenic rice plant increased by 49.3% and the CO 2 compensation point decreased by 26.2% than that of untransformed rice. Under high temperature (35 ℃), the photosynthetic rate of PEPC transgenic rice plant was higher over 17.5% than that of untransformed rice. 2. On the 8th day after photoinhibition treatment, the PSⅡ photochemical efficiency (F v/F m) and photochemical quenching (qP) of PEPC and PPDK+PEPC transgenic rice plants decreased by about 20%-30% while the non-photochemical quenching (qN) increased by approximately 30%. But F v/F m and qP of untransformed rice decreased by over 50% while qN increased by less than 10%. The result suggested that transgenic rice plants were more tolerant to photoinhibition.
文摘Levels of T1 (Thallium) in soil from 0 (control) to 50 μg/L through 0.2, 0.5, 1 and 2.5μg/L were directly and positively correlated to levels of T1 in plant tissue, the accumulation being maximum in roots, intermediate in leaves and minimum in stems. Thallium, especially at higher concentrations, adversely affected photosynthesis (as judged based on chlorophyll fluorescence parameters), suggesting inhibition of photo-activation of PSII (Photosystems II), and also decreased the rate of photosynthesis, the rate of transpiration and stomatal conductivity drastically. Exposure to TI also increased the activity of CAT (Catalase) (except at 1 μg/L) and POD (Peroxidase) (except at 0.2 μg/L), suggesting that the antioxidant systems in Coix lacryma-jobi were the main contributors of CAT and SOD (Superoxide Dismutase) and that the tolerance of C. lacryma-jobi to T1 is mainly due to this induced antioxidant machinery.