To extract vegetation pigment concentration and physiological status has been studied in two test areas covered with swamp and flourish vegetation using pushbroom hyperspectral imager (PHI) data which flied in Septemb...To extract vegetation pigment concentration and physiological status has been studied in two test areas covered with swamp and flourish vegetation using pushbroom hyperspectral imager (PHI) data which flied in September of 2000 at Daxing'anling district of Heilongjiang Province, China. The ratio analysis of reflectance spectra (RARS) indices, which were put forward by Chappelle et al (1992), are chosen in this paper owing to their effect and simpleness against both comparison with various methods and techniques for exploration of pigment concentration and characteristics of PHI data. The correlation coefficients between RARS indices and pigment concentration of vegetation were up to 0.8. The new RARS indices modes are established in the two test areas using both PHI data and spectra of different vegetations measured in the field. The indices' parameter images of chlorophyll a (Chl a), chlorophyll b (Chl b) and carotenoids (Cars) of the test areas covered with swamp and flourish vegetation are acquired by the new RARS indices modes. Furthermore, the regional concentration of Chl a and Chl b are extracted and quantified using regression equations between RARS indices and pigment concentrations, which were built by Blackburn (1998). The results showed the physiological status and variety clearly, and are in good agreement with the distribution of vegetation in the field.展开更多
Based on the in situ optical measurements in the Bohai Sea of China, which belongs to a typical case-2 water area, we studied the characteristics of DCM (deep chlorophyll maximum) such as its spatial distribution, ver...Based on the in situ optical measurements in the Bohai Sea of China, which belongs to a typical case-2 water area, we studied the characteristics of DCM (deep chlorophyll maximum) such as its spatial distribution, vertical profile, etc. We found that when the depth of the chlorophyll maximum is comparatively small, even in turbid coastal water regions, there is always a good correlation between the concentrations of chlorophyll maximum and the satellite-received signals in blue-green spectral bands; the correlation is even better than that between the surface chlorophyll concentrations and the satellite-received signals. The strong correlation existing even in turbid coastal water regions indicates that an ocean color model to retrieve the concentration of DCM can be constructed for coastal waters if a comprehensive knowledge of the vertical distribution of chlorophyll concentration in the Bohai Sea of China is available.展开更多
Fe, Chlorophyll (Chl) and total nitrogen (TN) content in tissues were measured in Fe-deficient cultures of Ulva. pertusa over a period of 60 days. Photosynthetic carbon fixation rates were studied at the start of and ...Fe, Chlorophyll (Chl) and total nitrogen (TN) content in tissues were measured in Fe-deficient cultures of Ulva. pertusa over a period of 60 days. Photosynthetic carbon fixation rates were studied at the start of and 30 days after Fe-deficiency culture, when the effects of Fe-deficiency on the ultrastructure were also analyzed. The iron content in tissue decreased exponentially during Fe-deficiency (from 726.7 to 31.6 μg/gdw) and simultaneously Chl and TN content declined to 4.35% and 59.9% of their original levels respectively. Maximum carbon fixation rate (50-250 μmol/m 2 s) under Fe-deficiency decreased significantly compared with the control (p<0.01) and was 13.6 to 0.365 μg C /cm 2 h. Photosynthesis in Fe-deficient cells became light-saturated at lower irradiance than that in control. Ultrastructural observations of Fe-deficient cells showed reductions in chloroplast number, some degeneration of lamellar organization, an increase in vacuolar area, a decrease in mitochondrial matrix density, and variation in accumulation body number and morphology. During Fe-deficiency, the algae growth rate continued to decline and after 6 weeks of iron deficiency, no further growth was detectable. These suggested that the lower growth rate of Ulva. pertusa under Fe-deficiency could be due mainly to nitrogen utilization and inhibition of photosynthesis.展开更多
Previous studies demonstrated that cryptochromes are involved in blue light-induced coiling and prehaustoria development in young de-etiolated dodder seedlings. In this study, we suggest that carotenoids and chlorophy...Previous studies demonstrated that cryptochromes are involved in blue light-induced coiling and prehaustoria development in young de-etiolated dodder seedlings. In this study, we suggest that carotenoids and chlorophyll are not the blue light absorbing chromophores involved in the mediation of prehaustoria development to blue light. Norflurazon-bleached dodder segments coiled and formed prehaustoria under blue light. However, norflurazon significantly reduced prehaustoria number (62%) under a mixture of red and far-red light, suggesting that phytochromes could be altered by norflurazon.展开更多
The need to maintain high rice yields and improve fertilizer nitrogen(N)-use efficiency has fueled the use of tools such as leaf colour chart(LCC) and chlorophyll meter(SPAD meter) in managing fertilizer N based on co...The need to maintain high rice yields and improve fertilizer nitrogen(N)-use efficiency has fueled the use of tools such as leaf colour chart(LCC) and chlorophyll meter(SPAD meter) in managing fertilizer N based on colour of the leaf. Field experiments were conducted during 2011 to 2013 at Ludhiana, India to assess the need for basal N application and to establish critical threshold values of leaf greenness as measured by LCC and SPAD meter for formulating strategies for in-season management of fertilizer N in dry direct-seeded rice(DDSR). Avoiding application of N at sowing did not adversely affect rice grain yield, indicating that basal N application in DDSR was not necessary and might lead to reduced N-use efficiency. Monitoring N uptake rate during the growing season of DDSR suggested that N uptake rate peaked at the two growth stages: maximum tillering(42 to 56 days after sowing(DAS))and panicle initiation stages(70 to 84 DAS). Using the Cate-Nelson procedure, critical LCC and SPAD meter values for fertilizer N application worked out to be 4 and 37, respectively. Real-time fertilizer N management strategy based on applying 30 kg N ha-1whenever SPAD meter or LCC readings fell below the critical values maintained optimum rice yields along with higher N-use efficiency than that observed by following blanket recommendation for fertilizer N in the region. The fixed-time variable-dose strategy consisted of applying prescriptive doses of 20 kg N ha-1at 14 DAS and 30 kg N ha-1at 28 DAS and corrective doses of 30, 40 or 50 kg N ha-1at 49 and 70 DAS depending upon LCC shade to be ≥ 4, 4–3.5, or < 3.5 and SPAD meter readings to be ≥ 40, 40–35, or< 35, respectively. This strategy also resulted in optimal rice yield along with higher N-use efficiency as compared to the blanket recommendation. This study revealed that in DDSR, fertilizer N could be managed more efficiently using the tools of LCC and SPAD meter than the current blanket recommendation.展开更多
文摘To extract vegetation pigment concentration and physiological status has been studied in two test areas covered with swamp and flourish vegetation using pushbroom hyperspectral imager (PHI) data which flied in September of 2000 at Daxing'anling district of Heilongjiang Province, China. The ratio analysis of reflectance spectra (RARS) indices, which were put forward by Chappelle et al (1992), are chosen in this paper owing to their effect and simpleness against both comparison with various methods and techniques for exploration of pigment concentration and characteristics of PHI data. The correlation coefficients between RARS indices and pigment concentration of vegetation were up to 0.8. The new RARS indices modes are established in the two test areas using both PHI data and spectra of different vegetations measured in the field. The indices' parameter images of chlorophyll a (Chl a), chlorophyll b (Chl b) and carotenoids (Cars) of the test areas covered with swamp and flourish vegetation are acquired by the new RARS indices modes. Furthermore, the regional concentration of Chl a and Chl b are extracted and quantified using regression equations between RARS indices and pigment concentrations, which were built by Blackburn (1998). The results showed the physiological status and variety clearly, and are in good agreement with the distribution of vegetation in the field.
文摘Based on the in situ optical measurements in the Bohai Sea of China, which belongs to a typical case-2 water area, we studied the characteristics of DCM (deep chlorophyll maximum) such as its spatial distribution, vertical profile, etc. We found that when the depth of the chlorophyll maximum is comparatively small, even in turbid coastal water regions, there is always a good correlation between the concentrations of chlorophyll maximum and the satellite-received signals in blue-green spectral bands; the correlation is even better than that between the surface chlorophyll concentrations and the satellite-received signals. The strong correlation existing even in turbid coastal water regions indicates that an ocean color model to retrieve the concentration of DCM can be constructed for coastal waters if a comprehensive knowledge of the vertical distribution of chlorophyll concentration in the Bohai Sea of China is available.
文摘Fe, Chlorophyll (Chl) and total nitrogen (TN) content in tissues were measured in Fe-deficient cultures of Ulva. pertusa over a period of 60 days. Photosynthetic carbon fixation rates were studied at the start of and 30 days after Fe-deficiency culture, when the effects of Fe-deficiency on the ultrastructure were also analyzed. The iron content in tissue decreased exponentially during Fe-deficiency (from 726.7 to 31.6 μg/gdw) and simultaneously Chl and TN content declined to 4.35% and 59.9% of their original levels respectively. Maximum carbon fixation rate (50-250 μmol/m 2 s) under Fe-deficiency decreased significantly compared with the control (p<0.01) and was 13.6 to 0.365 μg C /cm 2 h. Photosynthesis in Fe-deficient cells became light-saturated at lower irradiance than that in control. Ultrastructural observations of Fe-deficient cells showed reductions in chloroplast number, some degeneration of lamellar organization, an increase in vacuolar area, a decrease in mitochondrial matrix density, and variation in accumulation body number and morphology. During Fe-deficiency, the algae growth rate continued to decline and after 6 weeks of iron deficiency, no further growth was detectable. These suggested that the lower growth rate of Ulva. pertusa under Fe-deficiency could be due mainly to nitrogen utilization and inhibition of photosynthesis.
文摘Previous studies demonstrated that cryptochromes are involved in blue light-induced coiling and prehaustoria development in young de-etiolated dodder seedlings. In this study, we suggest that carotenoids and chlorophyll are not the blue light absorbing chromophores involved in the mediation of prehaustoria development to blue light. Norflurazon-bleached dodder segments coiled and formed prehaustoria under blue light. However, norflurazon significantly reduced prehaustoria number (62%) under a mixture of red and far-red light, suggesting that phytochromes could be altered by norflurazon.
基金supported by the Indian Council of Cultural Relations and Egypt Government through the Cultural Exchange Programme
文摘The need to maintain high rice yields and improve fertilizer nitrogen(N)-use efficiency has fueled the use of tools such as leaf colour chart(LCC) and chlorophyll meter(SPAD meter) in managing fertilizer N based on colour of the leaf. Field experiments were conducted during 2011 to 2013 at Ludhiana, India to assess the need for basal N application and to establish critical threshold values of leaf greenness as measured by LCC and SPAD meter for formulating strategies for in-season management of fertilizer N in dry direct-seeded rice(DDSR). Avoiding application of N at sowing did not adversely affect rice grain yield, indicating that basal N application in DDSR was not necessary and might lead to reduced N-use efficiency. Monitoring N uptake rate during the growing season of DDSR suggested that N uptake rate peaked at the two growth stages: maximum tillering(42 to 56 days after sowing(DAS))and panicle initiation stages(70 to 84 DAS). Using the Cate-Nelson procedure, critical LCC and SPAD meter values for fertilizer N application worked out to be 4 and 37, respectively. Real-time fertilizer N management strategy based on applying 30 kg N ha-1whenever SPAD meter or LCC readings fell below the critical values maintained optimum rice yields along with higher N-use efficiency than that observed by following blanket recommendation for fertilizer N in the region. The fixed-time variable-dose strategy consisted of applying prescriptive doses of 20 kg N ha-1at 14 DAS and 30 kg N ha-1at 28 DAS and corrective doses of 30, 40 or 50 kg N ha-1at 49 and 70 DAS depending upon LCC shade to be ≥ 4, 4–3.5, or < 3.5 and SPAD meter readings to be ≥ 40, 40–35, or< 35, respectively. This strategy also resulted in optimal rice yield along with higher N-use efficiency as compared to the blanket recommendation. This study revealed that in DDSR, fertilizer N could be managed more efficiently using the tools of LCC and SPAD meter than the current blanket recommendation.