Changes in the efficiency of the primary light energy conversion, fluorescence quenching parameters and contents of photosynthetic pigments were compared between two wheat ( Triticum aestivum L.) genotypes in respo...Changes in the efficiency of the primary light energy conversion, fluorescence quenching parameters and contents of photosynthetic pigments were compared between two wheat ( Triticum aestivum L.) genotypes in response to high light stress. The contents of chlorophyll and carotenoid in “Jing_411' were slightly higher than those in “Xiaoyan_54'. Under high light stress, photoinhibition as indicated by a sustained decrease in PSⅡ photochemical efficiency was more pronounced in “Jing_411' than in “Xiaoyan_54'. The content of ascorbate and the activity of the deepoxidase were higher in “Xiaoyan_54' than in “Jing_411'. The genotypic difference in resistance to photoinhibition is related to the capacity to dissipate the excess energy nonradiatively.展开更多
基金The Chinese State Key Basic Research and Development Plan to KUANGT-Y
文摘Changes in the efficiency of the primary light energy conversion, fluorescence quenching parameters and contents of photosynthetic pigments were compared between two wheat ( Triticum aestivum L.) genotypes in response to high light stress. The contents of chlorophyll and carotenoid in “Jing_411' were slightly higher than those in “Xiaoyan_54'. Under high light stress, photoinhibition as indicated by a sustained decrease in PSⅡ photochemical efficiency was more pronounced in “Jing_411' than in “Xiaoyan_54'. The content of ascorbate and the activity of the deepoxidase were higher in “Xiaoyan_54' than in “Jing_411'. The genotypic difference in resistance to photoinhibition is related to the capacity to dissipate the excess energy nonradiatively.